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Abstract

Boundary discontinuity designs are used to learn about treatment effects along a continuous

boundary that splits units into control and treatment groups according to their bivariate score

variable. These research designs are also called Multi-Score Regression Discontinuity designs, a

leading special case being Geographic Regression Discontinuity designs. We study the statistical

properties of commonly used local polynomial treatment effects estimators along the continuous

treatment assignment boundary. We consider two distinct approaches: one based explicitly on

the bivariate score variable for each unit, and the other based on their univariate distance to

the boundary. For each approach, we present pointwise and uniform estimation and inference

methods for the treatment effect function over the assignment boundary. Importantly, we show

that methods based on univariate distance to the boundary exhibit an irreducible large mis-

specification bias when the assignment boundary has kinks or other irregularities, making the

distance-based approach unsuitable for empirical work in those settings. In contrast, methods

based on the bivariate score/location variable do not suffer from this drawback. We illustrate

our methods with an empirical application and simulations.
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1 Introduction

We study estimation and inference in boundary discontinuity designs (Black, 1999; Dell, 2010;

Jardim et al., 2024), where the goal is to learn about causal treatment effects along a continuous

boundary that splits units into control and treatment groups according to the value of their bivariate

score/location variable. This setup is also known as a Multi-Score Regression Discontinuity (RD)

design (Reardon and Robinson, 2012), a leading special case being the Geographic RD design and

variations thereof (Keele and Titiunik, 2015, 2016; Keele et al., 2017; Galiani et al., 2017; Diaz and

Zubizarreta, 2023). See Cattaneo and Titiunik (2022, Section 2.3) for an overview of the literature

on Multi-dimensional RD designs, and Cattaneo et al. (2024, Section 5) for a practical introduction.

To describe the setup formally, suppose that (Yi(0), Yi(1),Xi), i = 1, 2, . . . , n, is a random sample,

where Yi(0) and Yi(1) denote the scalar potential outcomes for unit i under control and treatment

assignment, respectively, and the score Xi = (X1i, X2i)
′ is a continuous bivariate vector with

support X ⊆ R2. Units are assigned to either the control group or treatment group according to

their location Xi relative to a known one-dimensional boundary curve B splitting the support X

in two disjoint regions: X = A0 ∪A1 with A0 and A1 the control and treatment disjoint regions,

respectively, and B = bd(A0) ∩ bd(A1), where bd(At) denotes the boundary of the set At. The

observed response variable is Yi = 1(Xi ∈ A0)·Yi(0)+1(Xi ∈ A1)·Yi(1). Without loss of generality,

we assume that the boundary belongs to the treatment group, that is, bd(A1) ⊂ A1 andB∩A0 = ∅.

Boundary discontinuity designs are commonly used in quantitative social, behavioral, and biomed-

ical sciences. For example, consider the substantive application analyzed in Londoño-Vélez, Rodŕıguez

and Sánchez (2020). The authors studied the effects of a governmental subsidy for post-secondary

education in Colombia, called Ser Pilo Paga (SPP), a social anti-poverty policy providing tuition

support for four-year or five-year undergraduate college students in any government-certified higher

education institution (HEI) with high-quality status. Eligibility to the program SSP was based on

both merit and economic need: in order to qualify for the program, students had to obtain a

high grade in Colombia’s national standardized high school exit exam, SABER 11, and they had

also to come from economically disadvantaged families, measured by a survey-based wealth index

known as SISBEN. Eligibility followed a deterministic rule with a fixed bivariate cutoff: students

had to obtain a SABER 11 score in the top 9 percent of scores or better, and they had to come
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(a) Scatterplot and Boundary (SPP data). (b) Estimation and Inference (simulations).

Figure 1: Scatterplot, Treatment Boundary, and Estimation and Inference.
Note: Panel (a) presents a scatterplot of the bivariate score Xi using the SPP data, and also plots the treatment

boundary B with 40 marked grid points. Panel (b) presents estimation and inference results over the 40 boundary

grid points depicted in Panel (a) based on one simulated dataset calibrated using the real SPP data, and the solid

black line depicts the population treatment effect curve τ(x) assumed linear and calibrated using the real SPP data.

from a household with SISBEN index below a region-specific threshold. Formally, each student

was assigned a bivariate score Xi = (X1i, X2i)
⊤ = (SABER11i, SISBENi)

⊤, where X1i = SABER11i

recorded the SABER11 score and X2i = SISBENi recorded the SISBEN wealth score. After recen-

tering each variable at its corresponding threshold, the treatment assignment boundary becomes

B = {(SABER11, SISBEN) : (SABER11, SISBEN) ∈ {SABER11 ≥ 0 and SISBEN = 0} ∪ {SABER11 =

0 and SISBEN ≥ 0}}. Figure 1a presents a scatterplot of the bivariate score of the data of students

in the 2014 cohort (n = 363, 096 observations), and also plots the bivariate assignment boundary

B together with 40 evenly-spaced cutoff points along the boundary.

Section 2 presents the core assumption underlying the causal inference framework used in this

paper, which generalizes the standard unidimensional RD design to boundary discontinuity designs.

Given the standard (continuity and finite-moments) conditions in Assumption 1, the goal is to

conduct estimation and inference for the average treatment effect curve along the boundary :

τ(x) = E[Yi(1)− Yi(0)|Xi = x], x ∈ B,

both pointwise for each x ∈ B, and uniformly over B. For example, in the SPP application,

the outcome variable Yi = 1 if student i attended college or Yi = 0 otherwise, and thus the
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causal parameter τ(x) captures the treatment effect of SPP on the probability of college education

for students at the margin of program eligibility, as determined by their bivariate score Xi =

(SABER11i, SISBENi)
⊤ ∈ B. As a result, the parameter τ(x) captures policy-relevant heterogenous

treatment effects along the boundary B: for example, in Figure 1a, τ(b1) corresponds to the

(local) average treatment effect for students with high Sisben score (wealth) and low Saber 11

Score (academic), while τ(b40) corresponds to the (local) average treatment effect for students

with low Sisben score and higher Saber 11 score. Identification of these boundary treatment effects

parallels standard continuity-based univariate RD design arguments (Hahn et al., 2001): treatment

assignment changes abruptly along the boundary B, which implies that conditional expectations on

each side of the assignment boundary can be used to identify τ(x) whenever there is no systematic

“sorting” of units across the boundary, that is, whenever E[Yi(0)|Xi = x] and E[Yi(1)|Xi = x] are

continuous for all x ∈ B (Assumption 1 below). See Reardon and Robinson (2012), Keele and

Titiunik (2015), and references therein, for more discussion.

Motivated by the local to the assignment boundary identifiability of τ(x), researchers employ flex-

ible regression methods using only observations with score near the boundary B. Local polynomial

methods are the preferred choice for estimation and inference because they are simple (weighted)

linear regression methods that intuitively incorporate localization to the assignment boundary. Two

distinct implementations can be considered in this setting:

(i) regression analysis based on the univariate distance to the boundary B, or

(ii) regression analysis based on the bivariate location relative to the boundary B.

The first approach is more commonly used in practice because it is perceived as simpler, while the

second approach is sometimes also encountered in applications. Despite their widespread use, how-

ever, there is no foundational understanding of their statistical properties and relative merits. This

paper fills this gap in the literature by providing a comprehensive set of large sample results for

each of the two approaches, which we then use to offer specific practical recommendations for the

analysis and interpretation of boundary discontinuity designs. In particular, we provide pointwise

and uniform (over B) estimation and inference methods for both local polynomial regression ap-

proaches, and demonstrate theoretical and practical advantages of the approach based on bivariate

location over the approach based on distance (albeit both are shown to be valid under appropriate
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assumptions).

Using simulated data calibrated with the real SPP data (see the supplemental appendix for

details), Figure 1b illustrates graphically the two local polynomial approaches for estimation of

τ(x). The solid black line corresponds to the population treatment effect curve τ(x), taken to

be linear in order to remove smoothing bias. The red crosses and blue dots correspond to local

polynomial estimators based on, respectively, univariate distance to the boundary and bivariate

location relative to the boundary, for the 40 grid points depicted on the assignment boundary B in

Figure 1a. Noticeably, the estimator based on distance exhibits higher bias near the boundary kink

point x = b21, relative to the bivariate local polynomial estimator based on the bivariate score.

The figure also reports pointwise confidence intervals and bands based on the latter estimator. The

underlying theoretical justification for these methods, as well as related implementation details such

are bandwidth selection and robust bias correction inference, are novel contributions presented in

the upcoming sections.

Specifically, Section 3 presents pointwise and uniform estimation and inference methods for local

polynomial regression methods based on the univariate distance to the boundary B. We begin

by providing interpretable sufficient conditions (Assumption 2 below) for identification of τ(x),

which restrict the distance function in conjunction with the univariate kernel function used and

the shape of the boundary B. We then present an important negative result: near kinks of the

boundary B, a pth order distance-based local polynomial estimator exhibits an irreducible bias

of order h, the bandwidth used for implementation, no matter the polynomial order p used. This

drawback is due to the fact that the underlying population regression function is at most Lipschitz

continuous near kinks of the boundary B. Figure 1b illustrated the phenomenon numerically, but

our paper appears to be the first to provide a theoretical explanation for the large bias of the

distance-based treatment effect estimator. In contrast, when the boundary B is smooth, we show

that the pth order distance-based local polynomial estimator exhibits the usual bias of order hp+1.

Thus, our results show that the standard distance-based treatment effect estimator is consistent

for τ(x), both pointwise and uniformly over B, but it can exhibit a large bias affecting bandwidth

selection and statistical inference in applications whenever the B has kinks or other irregularities.

For uncertainty quantification, Section 3 presents pointwise and uniform (over B) large sample

distribution theory, which is used to propose both confidence intervals for τ(x) and confidence
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bands for the entire treatment effect curve (τ(x) : x ∈ B). The last part of Section 3 discusses

implementation, and also compares our results with related methods for standard univariate RD

designs.

The analysis based on distance is not as straight forward as it may seem: standard results in

the literature for univariate local polynomial regression need not be valid in this setting because

the specific features of the assignment boundary can lead to a large misspecification bias (near

kinks or other irregularities of B). As a result, employing the distance-based approach can be

detrimental in some applications. An alternative is to employ the bivariate location score directly.

Section 4 studies this approach, and offers pointwise and uniform estimation and inference methods

over B. The pointwise results follow directly from the literature, provided an additional regularity

condition on the bivariate kernel function and boundary B, formalized in Assumption 3 below. On

the other hand, the uniform inference results require some additional technical care, and appear to

be new to the literature. The main potential issue is that a uniform distributional approximation

is established over the lower-dimensional manifold B, and thus its shape can affect the validity

of the results. Section 4 also discusses new bandwidth selection methods based on mean square

error (MSE) expansions, robust bias-corrected inference, and related implementation details. Our

results provide natural generalizations of well-established results for univariate RD designs; see

Calonico et al. (2020) for bandwidth selection, and Calonico et al. (2014, 2018, 2022) for robust

bias correction.

Section 5 deploys our theoretical and methodological results to the SPP data, revising the main

results reported in Londoño-Vélez, Rodŕıguez and Sánchez (2020). In addition to providing further

empirical evidence in favor of their empirical findigns, we also find treatment effect heterogeneity

along the assignment boundary B. In addition, the supplemental appendix presents simulation

evidence using the SPP data for calibration.

Section 6 concludes with specific recommendations for practice. The supplemental appendix

presents generalizations of our theoretical results, reports their proofs, and gives other theoretical

and methodological results that may be of independent interest. In particular, a new strong ap-

proximation result for empirical process with polynomial bounded moments is presented (building

and extending recent work by Cattaneo and Yu, 2025).
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2 Setup

Using the notation and causal inference framework in the introduction, we maintain throughout

the paper the following basic conditions on the underlying data generating process.

Assumption 1 (Data Generating Process). Let t ∈ {0, 1}.

(i) (Y1(t),X1)
⊤, . . . , (Yn(t),Xn)

⊤ are independent and identically distributed random vectors

with X = [a1, b1]× [a2, b2] for −∞ < al < bl < ∞ for l = 1, 2.

(ii) The distribution of Xi has a Lebesgue density fX(x) that is continuous and bounded away

from zero on X.

(iii) µt(x) = E[Yi(t)|Xi = x] is (p+ 1)-times continuously differentiable on X.

(iv) σ2
t (x) = V[Yi(t)|Xi = x] is bounded away from zero and continuous on X.

(v) supx∈X E[|Yi(t)|2+v|Xi = x] < ∞ for some v ≥ 2.

This assumption is on par with the usual assumptions encountered in the classical RD literature

with an univariate score. In particular, part (iii) imposes standard smoothness conditions on the

bivariate conditional expectations of interest, which will play an important role in misspecification

bias reduction (or lack thereof) in our upcoming results. Identification of τ(x) follows directly from

those conditions (Reardon and Robinson, 2012; Keele and Titiunik, 2015, and references therein).

2.1 Notation

We employ standard concepts and notations from empirical process theory (Wellner et al., 2013;

Giné and Nickl, 2016) and geometric measure theory (Simon et al., 1984; Federer, 2014). In par-

ticular, for a vector v ∈ Rk, ∥v∥ := (
∑k

i=1 v
2
i )

1/2. For a matrix A ∈ Rm×n, ∥A∥ = sup∥x∥=1 ∥Ax∥.

For a Borel set S ⊆ X, the De Giorgi perimeter of S is perim(S) = supg∈D2(X)

∫
R2 1(x ∈

S) div g(x)dx/∥g∥∞, where div is the divergence operator, and D2(X) denotes the space of C∞

functions with values in R2 and with compact support included in X. In the case S is connected

and the boundary ∂S is a smooth simple closed curve, S simplifies to the curve length of ∂S. A

curve B ⊆ Rk is a rectifiable curve if there exists a Lipschitz continuous function γ : [0, 1] → Rk

such that B = γ([0, 1]). For a random variable Vi, we write En[g(Vi)] = n−1
∑n

i=1 g(Vi). For
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a function f from Rk to R, Supp(f) denotes closure of the set {x ∈ Rk : f(x) ̸= 0}. For re-

als sequences an = o(bn) if lim sup |an|
|bn| = 0, |an| ≲ |bn| if there exists some constant C and

N > 0 such that n > N implies |an| ≤ C|bn|. For sequences of random variables an = oP(bn) if

plimn→∞
|an|
|bn| = 0, |an| ≲P |bn| if lim supM→∞ lim supn→∞ P[|anbn | ≥ M ] = 0. Ck(X,Y) denotes the

class of k-times continuously differentiable functions from X to Y, and Ck(X) is a shorthand for

Ck(X,R). Let Φ(x) be the standard Gaussian cumulative distribution function.

3 Analysis based on Univariate Distance

For each unit i = 1, . . . , n, define their scalar distance-based score Di(x) = d(Xi,x)(1(Xi ∈ A1)−

1(Xi ∈ A0)) to the point x ∈ B, where d(·, ·) denotes a distance function. It is customary to use

the Euclidean distance d(Xi,x) = ∥Xi − x∥ =
√
(X1i − x1)2 + (X2i − x2)2 for x = (x1, x2)

⊤ ∈ B

in applications, but other choices are sometimes encountered. For each x ∈ B, the setup thus

reduces to a standard univariate RD design with Di(x) ∈ R the score variable and c = 0 the cutoff,

where Di(x) ≥ 0 if unit i is assigned to treatment status and Di(x) < 0 if unit i is assigned to

control status. The local polynomial treatment effect curve estimator based on distance is

τ̂dis(x) = e⊤1 γ̂1(x)− e⊤1 γ̂0(x), x ∈ B,

where, for t ∈ {0, 1},

γ̂t(x) = argmin
γ∈Rp+1

En

[(
Yi − rp(Di(x))

⊤γ
)2
kh(Di(x))1(Di(x) ∈ It)

]
,

with rp(u) = (1, u, u2, · · · , up)⊤ the usual univariate polynomial basis, kh(u) = k(u/h)/h for uni-

variate kernel function k(·) and bandwidth parameter h, and I0 = (−∞, 0) and I1 = [0,∞). See

Cattaneo and Titiunik (2022) for a literature review of RD designs, and Cattaneo et al. (2020, 2024)

for practical introductions. The univariate kernel function typically down-weights observations as

the distance to x ∈ B increases, while the bandwidth determines the level of localization to each

point on the boundary B.

We impose the following conditions on the underlying features of the distance-based local poly-

nomial estimator τ̂dis(x).
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Assumption 2 (Univariate Distance-Based Kernel). Let t ∈ {0, 1}.

(i) d : R2 7→ [0,∞) satisfies ∥x1 − x2∥ ≲ d(x1,x2) ≲ ∥x1 − x2∥ for all x1,x2 ∈ X.

(ii) Either k : R → [0,∞) is compact supported and Lipschitz continuous, or k(u) = 1(u ∈

[−1, 1]).

(iii) lim infh↓0 infx∈B
∫
At

kh(d(u,x))du ≳ 1.

Part (i) of this assumption requires the distance function be equivalent (up to constants) to

the Euclidean distance, while Assumption 2(ii) imposes standard conditions on the (univariate)

kernel function. The last part of this assumption is novel to the literature: it implicitly restricts

the geometry of the boundary B relative to the kernel and distance functions. More precisely,

it rules out settings where highly irregular boundary shapes will lead to regions with too “few”

data: a necessary condition for the estimator γ̂t(x) to be well-defined in large samples is that

P[kh(Di(x))1(Di(x) ∈ It)] =
∫
At

kh(d(u,x))fX(u)du > 0. Our theoretical results show that

Assumption 2(iii) is a simple sufficient condition, due to Assumption 1(ii). Commonly encountered

treatment assignment boundaries and distance functions typically satisfy Assumption 2; a potential

exception being highly irregular geographic boundaries.

3.1 Identification and Interpretation

For each treatment group t ∈ {0, 1}, boundary point x ∈ B, and distance-based score Di(x), the

univariate distance-based local polynomial estimator γ̂t(x) is the sample analog of the coefficients

associated with the best (weighted, local) mean square approximation of the conditional expectation

E[Yi|Di(x)] based on rp(Di(x)):

γ∗
t (x) = argmin

γ∈Rp+1

E
[(
Yi − rp(Di(x))

⊤γ
)2
kh(Di(x))1(Di(x) ∈ It)

]
.

Therefore, letting θ̂t,x(0) = e⊤1 γ̂t(x), θ
∗
t,x(0) = e⊤1 γ

∗
t (x), and θt,x(r) = E[Yi|Di(x) = r,Di(x) ∈ It]

for r ∈ R, we have the standard least squares decomposition

θ̂t,x(0)− θt,x(0) = e⊤1 Ψ
−1
t,xOt,x +

[
θ∗t,x(0)− θt,x(0)

]
+
[
e⊤1 (Ψ̂

−1

t,x −Ψ−1
t,x)Ot,x

]
(1)
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for each group t ∈ {0, 1}, and where

Ψt,x = E
[
rp

(Di(x)

h

)
rp

(Di(x)

h

)⊤
kh(Di(x))1(Di(x) ∈ It)

]
,

Ψ̂t,x = En

[
rp

(Di(x)

h

)
rp

(Di(x)

h

)⊤
kh(Di(x))1(Di(x) ∈ It)

]
, and

Ot,x = En

[
rp

(Di(x)

h

)
kh(Di(x))(Yi − θ∗t,x(Di(x)))1(Di(x) ∈ It)

]
.

In the decomposition (1), the first term is the stochastic linear representation of the centered

estimator, θ̂t,x(0) − θt,x(0), since it is an average of (unconditional) mean-zero random variables,

the second term is the mean square approximation bias, and the third term is a non-linearity

error arising from the convergence of the Gram matrix associated with the (weighted) least squares

estimator.

Noting τ̂dis(x) = θ̂1,x(0) − θ̂0,x(0), the following lemma characterizes the target estimand of the

distance-based local polynomial estimator.

Lemma 1 (Identification). Suppose Assumptions 1(i)–(iii) and 2(i) hold. Then, τ(x) = limr↓0 θ1,x(r)−

limr↑0 θ0,x(r) for all x ∈ B.

This lemma is established by noting that, for each group t ∈ {0, 1} and r ∈ R,

θt,x(r) = E
[
Yi
∣∣Di(x) = r,Di(x) ∈ It

]
= E

[
Yi
∣∣d(Xi,x) = |r|,Xi ∈ At

]
= E

[
Yi(t)

∣∣d(Xi,x) = |r|
]
,

and then verifying that limu↓0 E[Yi(t)|d(Xi,x) = u] = µt(x) under the conditions imposed. With-

out restricting the data generating process, as well as the assignment boundary, distance function,

and and kernel function, θt,x(0) and µt(x) need not agree. Employing Lemma 1 and the decompo-

sition (1), we obtain:

τ̂dis(x)− τ(x) = Ln(x) +Bn(x) +Qn(x), x ∈ B,

where Ln(x) = e⊤1 Ψ
−1
1,xO1,x−e⊤1 Ψ

−1
0,xO0,x is a mean-zero linear statistic, Bn(x) = θ∗1,x(0)−θ∗0,x(0)−

τ(x) is the bias of the estimator, and Qn(x) = e⊤1 (Ψ̂
−1

1,x −Ψ−1
1,x)O1,x − e⊤1 (Ψ̂

−1

0,x −Ψ−1
0,x)O0,x is the

higher-order linearization error.
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In standard local polynomial regression settings, Ln(x) is approximately Gaussian, Bn(x) is of

order hp+1, and Qn(x) is neglected. However, because estimation is conducted along the boundary

B, not all of those standard results in the literature remain valid in the context of boundary

discontinuity designs.

3.2 Bias Along the Boundary

Unlike the case of standard one-dimensional local polynomial estimation, in boundary discontinuity

designs the smoothness of θt,x(r) = E[Yi|Di(x) = r,Di(x) ∈ It] depends on smoothness of the

boundary B. More specifically, the bias of the distance-based local polynomial estimator can

be affected by the shape of the boundary B, regardless of the polynomial order p used when

constructing the estimator. Figure 2 demonstrates the problem graphically: for a point x ∈ B that

is close enough to a kink point (0, 0) on the boundary, the conditional expectation θ1,x(r) is not

differentiable for all r ≥ 0. This problem arises because, given the distance function d(·, ·), for any

point x ∈ B near a kink, a “small” r gives a complete arc {x ∈ A1 : d(Xi,x) = r}, while for a

“large” r the arc is truncated by the boundary. As a result, for the example in Figure 2, θ1,x(r) is

smooth for all r ≤ r3 and r > r3, but the function is not differentiable at r = r3. Furthermore, at

r = r3, the left derivative is constant, but the right derivative is equal to infinity. The supplemental

appendix gives details on this analytic example, and provides further numerical evidence.

Although smoothness of the boundary B can affect the smoothness of θt,x(r), the fact that the

distance-based estimator is “local” means that the approximation error will be no greater than

that of a local constant estimator, regardless of the choice of polynomial order p. The following

lemma formalizes this result, and also shows that this bias order cannot be improved by increasing

p ≥ 0.

Lemma 2 (Approximation Error: Minimal Guarantee). For some L > 0, let P be the class of data

generating processes satisfying Assumptions 1(i)-(iii) and 2 with X ⊆ [−L,L]2, and the following

three additional conditions:

(i) L−1 ≤ infx∈X fX(x) ≤ supx∈X fX(x) ≤ L,

(ii) max0≤|ν|≤p supx∈X |∂νµ(x)|+max0≤|ν|≤p supx,y∈X
|∂νµ(x)−∂νµ(y)|

∥x−y∥ ≤ L, and

(iii) lim infh↓0 infx∈B
∫
At

kh(d(u,x))du ≥ L−1.
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(a) Distance to b ∈ B. (b) Distance-based Conditional Expectation.

Figure 2: Lack of Smoothness of Distance-Based Conditional Expectation near a Kink.
Note: Analytic example of θ1,b(r) = E[Y (1)|Di(b) = r], r ≥ 0, for distance transformation Di(b) = d(Xi,b) =
∥Xi − b∥ to point b ∈ B near a kink point on the boundary. The induced univariate conditional expectation
r 7→ θ1,b(r) is continuous but not differentiable at r = r3.

If nh2 → ∞ and for any p ≥ 1, then

1 ≲ lim inf
n→∞

sup
P∈P

sup
x∈B

Bn(x)

h
≤ lim sup

n→∞
sup
P∈P

sup
x∈B

Bn(x)

h
≲ 1.

This lemma characterizes precisely the uniform over B (and data generating processes) bias of

the distance-based local polynomial estimator τ̂dis(x). The upper bound in Lemma 2 is established

uniformly over the class of data generating processes because we can show that |θt(0) − θt(r)| ≲

r for t ∈ {0, 1} in general. The lower bound is shown using the following example. Suppose

Xi ∼ Uniform([−2, 2]2), µ0(x1, x2) = 0, µ1(x1, x2) = x2 for all (x1, x2) ∈ [−2, 2]2, and Yi(0)|Xi ∼

Normal(µ0(Xi), 1) and Yi(1)|Xi ∼ Normal(µ1(Xi), 1). Let d(·, ·) be the Euclidean distance, and

suppose that the control and treatment regions are A1 = {(x, y) ∈ R2 : x ≤ 0, y ≥ 0} and

A0 = R2/A1, respectively, and hence B = {(x, y) ∈ R : −2 ≤ x ≤ 0, y = 0 or x = 0, 0 ≤ y ≤ 2}.

This boundary is as Figure 2a, having a 90◦ kink at x = (0, 0). It follows that the conditions of

Lemma 2 hold, and hence this is an allowed data generating process. The supplemental appendix

establishes the lower bound by careful analysis of the resulting approximation bias to establish a

lower bound.

As a point of contrast, note that Bn(x) ≲P hp+1 pointwise in x ∈ B, for small enough h,

provided that the kinks on the boundary B are sufficiently far apart of each other relative to the
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bandwidth. However, Lemma 2 demonstrates that, no matter how large the sample size is (i.e.,

how small the bandwidth is), there will always be a region near a kink of the boundary B where

the misspecification bias of the distance-based local polynomial estimator τ̂dis(x) is at most of the

order h, regardless of the polynomial order p employed. The problem arises when the boundary

B changes non-smoothly, leading to a non-differentiable regression function θt,x(r) = E[Yi|Di(x) =

r,Di(x) ∈ It], t ∈ {0, 1}, as illustrated in Figure 2b. On the other hand, a better smoothing bias

can be established if the boundary B is smooth enough.

Lemma 3 (Approximation Error: Smooth Boundary). Suppose Assumptions 1(i)-(iii) and 2 hold,

with d(·, ·) the Euclidean distance.

(i) For x ∈ B, and for some δ, ε > 0, suppose that B ∩ {y : ∥y − x∥ ≤ ε} = γ([−δ, δ]),

where γ : R → R2 is a one-to-one function in Cκ+2([−δ, δ],R2). Then, θ0,x(·) and θ1,x(·)

are (κ ∧ (p+ 1))-times continuously differentiable on [0, ε]. Therefore, there exists a positive

constant C such that |Bn(x)| ≤ Chκ∧(p+1) for all h ∈ [0, ε] and x ∈ B.

(ii) Suppose B = γ([0, L]) where γ is a one-to-one function in Cι+2([0, L],R2) for some L > 0.

Then, there exists δ > 0 such that for all x ∈ γ([δ, L− δ]), θ0,x(·) and θ1,x(·) are (ι∧ (p+1))-

times continuously differentiable on [0, δ], and limr↓0
dv

drv θt,x(r) exists and is finite for all

0 ≤ v ≤ p + 1 and t ∈ {0, 1}. Therefore, there exists a positive constant C such that

supx∈B |Bn(x)| ≤ Chι∧(p+1) for all h ∈ [0, δ].

This lemma gives sufficient conditions in terms of smoothness of the boundary B to achieve a

smaller order of misspecification bias of τ̂dis(x), when compared to the minimal guarantee given

by Lemma 2. In particular, for a uniform bound on misspecification bias, the sufficient condition

in Lemma 3 requires the boundary B be uniformly smooth in that it can be parameterized by

one smooth function. The example discussed after Lemma 2 already showed that the sufficient

condition is also necessary, in the sense that even a piecewise smooth B with only one kink gives

a uniform bias of order h.

In Appendix A, we also show that if we consider the class of rectifiable boundaries, then any

estimator based on univariate distance can not achieve a uniform rate of consistency better than

n−1/4, that is, the non-parametric mean square minimax rate for estimating bivariate Lipschitz

functions (Stone, 1982). And the local polynomial estimator based on univariate distance gives a
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uniform rate of consistency no larger than n−1/4 log n, implying it is nearly minimax optimal (up

to the log n term). This minimax result means that no matter which estimator based on distance

is used, it is always possible to find a boundary among rectifiable curves and a member of the data

generating process class defined in the Appendix such that the estimation error is no less than

n−1/4. The instance that we construct for the proof involve countable many kinks.

3.3 Treatment Effect Estimation and Inference

Due to the bias issues discussed, this section develops estimation and inference results for τ̂dis(x)

under high-level conditions on Bn(x). The next section discusses implementation, and compares

our results to methods developed for standard RD designs.

In the supplemental appendix, we provide precise bounds on the linear error Ln(x) and the

non-linear error Qn(x), both pointwise and uniformly over B. Those results give the following

convergence rates for the distance-based local polynomial treatment effect estimator.

Theorem 1 (Rates of Convergence). Suppose Assumptions 1 and 2 hold. If nh2/ log(n) → ∞,

then

(i) |τ̂dis(x)− τ(x)| ≲P
1√
nh2

+ 1

n
1+v
2+v h2

+ |Bn(x)| for x ∈ B, and

(ii) supx∈B |τ̂dis(x)− τ(x)| ≲P

√
logn
nh2 + logn

n
1+v
2+v h2

+ supx∈B |Bn(x)|.

This theorem establishes the poinwise and uniform (over B) convergence rates for the distance-

based treatment effect estimator. By Lemma 2, τ̂dis(x) →P τ(x), both pointwise and uniformly,

if h → 0. However, τ̂dis(x) has a variance convergence rate of order n−1h−2 despite being a “uni-

variate” local polynomial estimator, which would have näıvely suggested a variance convergence of

order n−1h−1 instead. In addition to exhibiting a bivariate curse of dimensionality, the convergence

rate of the treatment effect estimator τ̂dis(x) along the boundary B is determined by the smooth-

ness of the B, that is, the presence of kinks. It is not difficult to establish valid pointwise and

integrated over B MSE convergence rates analogous to those in Theorem 1(i). See the supplemen-

tal appendix for details. Section 3.4 discusses the implications of these results for implementation,

leveraging standard methods from univariate RD designs.

To develop companion pointwise and uniform inference procedures along the treatment assign-

ment boundary B, we consider the feasible t-statistic at each boundary point x ∈ B (for given a
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bandwidth choice):

T̂dis(x) =
τ̂dis(x)− τ(x)√

Ξ̂x,x

,

where, using standard least squares algebra, for all x1,x2 ∈ B and t ∈ {0, 1}, we define

Ξ̂x1,x2 = Ξ̂0,x1,x2 + Ξ̂1,x1,x2 , Ξ̂t,x1,x2 =
1

nh2
e⊤1 Ψ̂

−1

t,x1
Υ̂t,x1,x2Ψ̂

−1

t,x2
e1,

and

Υ̂t,x1,x2 = h2En

[
rp

(Di(x1)

h

)
kh(Di(x1))

(
Yi − θ̂t,x1(Di(x1))

)
1(Di(x1) ∈ It)

× rp

(Di(x2)

h

)⊤
kh(Di(x2))

(
Yi − θ̂t,x2(Di(x2))

)
1(Di(x2) ∈ It)

]
.

Thus, feasible confidence intervals and confidence bands over B take the form:

Îdis(x;α) =

[
τ̂dis(x)−qα

√
Ξ̂x,x , τ̂dis(x) +qα

√
Ξ̂x,x

]
, x ∈ B,

for any α ∈ [0, 1], and where qα denotes the appropriate quantile depending on the desired inference

procedure.

For pointwise inference, it is straightforward to show that supt∈R |P[T̂dis(x) ≤ t]− Φ(t)| → 0 for

each x ∈ B, under standard regularity conditions, and provided that
√
nh2|Bn(x)| → 0. Thus,

in this case, qα = Φ−1(1 − α/2) is an asymptotically valid choice. For uniform inference, we first

establish a novel strong approximation for the entire stochastic process (T̂dis(x) : x ∈ B), assuming

that
√
nh2 supx∈B |Bn(x)| → 0. With some technical work, we can then choose the appropriate

qα for uniform inference because

P
[
τ(x) ∈ Îdis(x;α) , for all x ∈ B

]
= P

[
sup
x∈B

∣∣T̂dis(x)
∣∣ ≤ qα

]
,

and the distribution of supx∈B
∣∣T̂dis(x)

∣∣ can be deduced from the strong approximation of the

stochastic process (T̂dis(x) : x ∈ B).

Theorem 2 (Statistical Inference). Suppose Assumptions 1 and 2 hold. Let W be the σ-algebra
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generated by ((Yi, (Di(x) : x ∈ B)) : 1 ≤ i ≤ n).

(i) For all x ∈ B, if n
v

2+v h2 → ∞ and nh2B2
n(x) → 0, then

P
[
τ(x) ∈ Îdis(x;α)

]
→ 1− α,

for qα = Φ−1(1− α/2).

(ii) If n
v

2+v h2/ log n → ∞ and nh2 supx∈BB2
n(x) → 0, and perim({y ∈ At : d(y,x)/h ∈

Supp(k)}) ≲ h for all x ∈ B and t ∈ {0, 1}, then

P
[
τ(x) ∈ Îdis(x;α), for all x ∈ B

]
→ 1− α,

for qα = inf{c > 0 : P[supx∈B |Ẑn(x)| ≥ c|W] ≤ α}, where (Ẑn : x ∈ B) is a Gaussian pro-

cess conditional on W, with E[Ẑn(x1)|W] = 0 and E[Ẑn(x1)Ẑn(x2)|W] = Ξ̂x1,x2/
√

Ξ̂x1,x1Ξ̂x2,x2,

for all x1,x2 ∈ B.

This theorem establishes asymptotically valid inference procedures using the distance-based local

polynomial treatment effect estimator τ̂dis(x). For uniform inference, an additional mild restriction

on the assignment boundary B is imposed: the De-Giorgi perimeter condition can be verified when

the boundary of {y ∈ At : d(y,x)/h ∈ Supp(k)} is a curve of length no greater than h up to a

constant; since the set is contained in a h-ball centered at x, the curve length condition holds as

long as the curve B ∩ {y ∈ R2 : d(y,x) ≤ h} is not “too wiggly”.

3.4 Implementation and Discussion

Although the distance-based estimator τ̂dis(x) looks like an univariate local polynomial estimation

procedure, based on the scalar score variableDi(x), Theorem 1 shows that its pointwise and uniform

variance convergence rate is equal to that of a bivariate nonparametric estimator, which are sharp.

Nevertheless, Theorem 2 shows that inference results derived using univariate local polynomial

regression methods can be deployed directly in distance-based settings, provided the side conditions

are satisfied. This result follows from the fact that T̂dis(x) is constructed as a self-normalizing

statistic, and therefore it is adaptive to the fact that the univariate covariate Di(x) is actually

based on the bivariate covariate Xi. This finding documents another advantage of employing pre-
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asymptotic variance estimators and self-normalizing statistics for distributional approximation and

inference (Calonico et al., 2018). It follows that standard estimation and inference methods from

the univariate RD design literature remain valid, provided an appropriate bandwidth is chosen and

the induced bias due to the shape of the assignment boundary B is small (or accounted for).

For implementation, consider first the case that Bn(x) ≲ hp+1, that is, the assignment boundary

B is smooth. Establishing a precise MSE expansion for τ̂dis(x) is cumbersome due to the added

complexity introduced by the distance transformation, but the convergence rates can be deduced

from Theorem 1. The incorrect univariate MSE-optimal bandwidth is h1d ≍ n−1/(3+2p), while the

correct MSE-optimal bandwidth is hdis ≍ n−1/(4+2p), implying that taking the distance variable

as the univariate covariate, and thus ignoring its intrinsic bivariate dimension, implies that the

resulting bandwidth choice will lead to a smaller bandwidth because n−1/(3+2p) < n−1/(4+2p), that

is, undersmoothing the point estimator (relative to the optimal MSE bandwidth choice). As a

consequence, the point estimator will not be MSE-optimal but rather exhibit more variance and

less bias, and the associated inference procedures will be more conservative. An obvious solution

is to rescale the incorrect univariate n1/(3+2p)

n1/(4+2p)h1d, but this may not be necessary if the empirical

implementation of h1d employs a pre-asymptotic variance estimator, as in the software package

rdrobust (https://rdpackages.github.io/rdrobust/). See Calonico et al. (2020), and reference

therein, for details on bandwidth selection for standard univariate RD designs.

When the assignment boundary B exhibits kinks, no matter how large the sample size or the

polynomial order chosen, there will always be a region near each kink where the bias will be large,

that is, of irreducible order h, by Lemma 2. In this case, near each kink the incorrect univariate

MSE-optimal bandwidth is h1d ≍ n−1/3, while the correct MSE-optimal bandwidth is hdis ≍ n−1/4.

Away from each kink, the MSE-optimal bandwidths are as discussed in the preceeding paragraph.

This phenomenon is generated by the lack of smoothness of B, and leads to different MSE-optimal

bandwidths for each x ∈ B, thus making automatic implementation more difficult. A simple

solution to this problem is to set hdis ≍ n−1/4 for all x ∈ B, which is generically suboptimal but

always no larger than the pointwise MSE-optimal bandwidth, thus delivering a more variable (than

optimal) point estimator and more conservative (than possible) associated inference procedure. In

our companion software, rd2d, we employ the software package rdrobust for bandwidth selection

with p = 0 as a simple rule-of-thumb, and leave for future work developing a bandwidth selection
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procedure that is adaptive to the potential presence of kinks in B. Importantly, as discussed in

Section 4, estimation and inference using directly the bivariateXi solves this problem automatically.

Given a choice of (MSE-optimal) bandwidth h, valid statistical inference can be developed by

controlling the remaining misspecification bias. When the boundary B is smooth, robust bias

correction for standard univariate RD designs continues to be valid in the context of distance-

based estimation (Calonico et al., 2014, 2018, 2022). On the other hand, when B exhibits kinks,

undersmoothing relative to the MSE-optimal bandwidth for p = 0 is needed due to the fact that

increasing p does not necessarily imply a reduction in misspecification bias, and thus bias correction

techniques are ineffective (uniformly over x ∈ B).

Having discussed the role of bandwidth choices, and the related issue of bias induced by the lack

of smoothness of B, it remains to explain how uniform inference is implemented based on Theorem

5(ii). In practice, we discretize along the boundary with point of evaluations x1, · · · ,xM ∈ B, as

in Figure 1a, and hence the feasible (conditional) Gaussian process (Ẑn(x) : x ∈ B) is reduced

to the M -dimensional (conditional) Gaussian random vector Ẑn = (Ẑn(x1), . . . , Ẑn(xM )) with

covariance matrix having a typical element E[Ẑn(x1)Ẑn(x2)|W]. Finding qα boils down to finding

the α-quantile of the distribution of max1≤l≤M |Ẑn(xl)|, which can be easily simulated. Section 5

illustrates this approach empirically.

4 Analysis based on Bivariate Location

The previous section demonstrated the potential detrimental aspects of employing distance-based

local polynomial regression to analyze boundary discontinuity designs. When the boundary has

kinks, as it is common in many applications based on sharp or geographic assignment rules, uni-

variate methods based on distance to the boundary can lead to large biases near kinks or other

irregularities on the assignment boundary. This section shows that an easy way to avoid the

distance-based bias is to employ bivariate local polynomial regression methods.

The location-based treatment effect curve estimator of τ(x) is

τ̂(x) = e⊤1 β̂1(x)− e⊤1 β̂0(x), x ∈ B,
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where, for t ∈ {0, 1},

β̂t(x) = argmin
β∈Rpp+1

En

[(
Yi −Rp(Xi − x)⊤β

)2
Kh(Xi − x)1(Xi ∈ At)

]
,

with pp = (2 + p)(1 + p)/2− 1, Rp(u) = (1, u1, u2, u
2
1, u

2
2, u1u2, · · · , u

p
1, u

p
2)

⊤ denotes the pth order

polynomial expansion of the bivariate vector u = (u1, u2)
⊤, Kh(u) = Kh(u1/h, u2/h)/h

2 for a

bivariate kernel function K(·) and a bandwidth parameter h. We employ the same bandwidth for

both dimensions of Xi only for simplicity, and because it is common practice to first standardize

each dimension of the bivariate score.

We impose the following assumption on the bivariate kernel function and assignment boundary.

Assumption 3 (Kernel Function). Let t ∈ {0, 1}.

(i) Either K : R → [0,∞) is compact supported and Lipschitz continuous, or K(u) = 1(u ∈

[−1, 1]2).

(ii) lim infh↓0 infx∈B
∫
At

Kh(u− x)du ≳ 1.

The first condition is standard in the literature, while the second condition is new but rather

minimal. Similar to the case of distance-based estimation (Assumption 2(iii)), the goal of Assump-

tion 3(ii) is to ensure enough data is available in large samples for each point x ∈ B because

P[Kh(Xi − x)1(Xi ∈ At) > 0] ≳
∫
At

Kh(u − x)du under Assumption 1. Given these conditions,

pointwise and uniform estimation results, as well as valid MSE expansions, follow from standard

local polynomial calculations and empirical process theory. On the other hand, uniform distribu-

tion theory needs to be established with some extra technical care: the supplemental appendix

establishes a key new strong approximation result that takes into account the specific features of

the estimator and manifold B.

4.1 Treatment Effect Estimation and Inference

Using standard concentration techniques from empirical process theory, we obtain the pointwise

and uniform convergence rate of τ̂(x).

Theorem 3 (Rate of Convergence). Suppose Assumptions 1 and 3 hold. If nh2/ log(n) → ∞, then
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(i) |τ̂(x)− τ(x)| ≲P
1√
nh2

+ 1

n
1+v
2+v h2

+ hp+1 for x ∈ B, and

(ii) supx∈B |τ̂(x)− τ(x)| ≲P

√
logn
nh2 + logn

n
1+v
2+v h2

+ hp+1.

This theorem immediately establishes consistency of the treatment effect estimator based on the

bivariate location score, provided that h → 0. More importantly, the theorem shows that the

bias is of order hp+1 regardless of whether there are kinks or other irregularities in B, under the

assumptions imposed. Comparing Theorems 1 and 3, it follows that both estimators can achieve the

same (optimal) convergence rate when the boundary B is smooth, but otherwise τ̂(x) can achieve

a faster (indeed, optimal) convergence rate, while τ̂dis(x) cannot because of the large order-h bias

when B is not smooth documented in Lemma 2.

Given its more standard structure, it is possible to establish a pointwise and integrated (con-

ditional) MSE expansion for the estimator τ̂(x). Using standard multi-index notation, define the

leading conditional bias Bx = B1,x −B0,x with

Bt,x = e⊤1 Γ̂
−1

t,x

∑
|k|=p+1

µ
(k)
t (x)

k!
En

[
rp

(Xi − x

h

)(Xi − x

h

)k
Kh(Xi − x)1(Xi ∈ At)

]

and Γ̂t,x = En

[
rp
(
Xi−x

h

)
rp
(
Xi−x

h

)⊤
Kh(Xi − x)1(Xi ∈ At)

]
, for t ∈ {0, 1}. Similarly, the leading

conditional variance is Vx = V1,x +V0,x with Vt,x = e⊤1 Γ̂
−1

t,xΣt,x,xΓ̂
−1

t,xe1 and

Σt,x,x = h2En

[
rp

(Xi − x

h

)
rp

(Xi − x

h

)⊤
Kh(Xi − x)2σ2

t (Xi)1(Xi ∈ At)
]
,

for t ∈ {0, 1}. The following theorem gives the MSE expansions.

Theorem 4 (MSE Expansions). Suppose Assumptions 1 and 3 hold, and let w(x) be a non-negative

continuous function on B such that
∫
B
w(x)dx < ∞. If nh2/ log(n) → ∞, then

(i) E[(τ̂(x)− τ(x))2|X] = h2(p+1)B2
x + 1

nh2Vx + oP(rn), and

(ii)
∫
B
E[(τ̂(x)− τ(x))2|X]w(x)dx = h2(p+1)

∫
B
B2

xdw(x) +
1

nh2

∫
B
Vxw(x)dx+ oP(rn),

with rn = h2p+2 + n−1h−2 + n− 2(1+v)
2+v h−4.

Ignoring the asymptotically constant and higher-order terms, the approximate MSE-optimal and
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IMSE-optimal bandwidth choices are

hMSE,p =
( 2Vx

(2p+ 2)B2
x

1

n

)1/(2p+4)
and hIMSE,p =

( 2
∫
B
Vxw(x)dx

(2p+ 2)n
∫
B
B2

xw(x)dx

1

n

)1/(2p+4)
,

provided that Bx ̸= 0 and
∫
B
B2

xω(x)dx ̸= 0, respectively.

4.2 Uncertainty Quantification

Given a bandwidth choice, the feasible t-statistic at each boundary point x ∈ B is

T̂(x) =
τ̂(x)− τ(x)√

Ω̂x,x

,

where, using standard least squares algebra, for all x1,x2 ∈ B and t ∈ {0, 1},

Ω̂x1,x2 = Ω̂0,x1,x2 + Ω̂1,x1,x2 , Ω̂t,x1,x2 =
1

nh2
e⊤1 Γ̂

−1

t,x1
Σ̂t,x1,x2Γ̂

−1

t,x2
e1

with

Σ̂t,x1,x2 = h2En

[
rp

(Xi − x1

h

)
rp

(Xi − x2

h

)⊤
Kh(Xi − x1)Kh(Xi − x2)ε

2
i1(Xi ∈ At)

]

and εi = Yi − 1(Xi ∈ A0)e
⊤
1 β̂0(Xi)− 1(Xi ∈ A1)e

⊤
1 β̂1(Xi).

Feasible confidence intervals and confidence bands over the treatment boundary B take the form:

Î(x;α) =

[
τ̂(x)−qα

√
Ω̂x,x , τ̂(x) +qα

√
Ω̂x,x

]
, x ∈ B,

for any α ∈ [0, 1], and where qα denotes the appropriate quantile depending on the targeted in-

ference procedure. For pointwise inference, as in the previous section, it is a textbook exercise to

show that supt∈R |P[T̂(x) ≤ t] − Φ(t)| → 0 for each x ∈ B, under standard regularity conditions,

and provided that
√
nh2|Bn(x)| → 0. For uniform inference, as in the previous section, we ap-

proximate the distribution of the entire stochastic process (T̂(x) : x ∈ B) first, and then deduce

an approximation for supx∈B |T̂(x)|. This approach enable us to construct asymptotically valid
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confidence bands because, as noted previously,

P
[
τ(x) ∈ Î(x;α) , for all x ∈ B

]
= P

[
sup
x∈B

∣∣T̂(x)∣∣ ≤ qα

]
.

See the supplemental appendix for omitted technical details.

Theorem 5 (Inferences). Suppose Assumptions 1 and 3 hold. Let W = ((Y1,X1), . . . , (Yn,Xn)).

(i) For all x ∈ B, if n
v

2+v h2 → ∞ and
√
nh2hp+1 → 0, then

P
[
τ(x) ∈ Î(x;α)

]
→ 1− α,

for qα = Φ−1(1− α/2).

(ii) If n
v

2+v h2/ log n → ∞ and
√
nh2hp+1 → 0, and perim({y ∈ At : (y− x)/h ∈ Supp(K)}) ≲ h

for all x ∈ B and t ∈ {0, 1}, then

P
[
τ(x) ∈ Î(x;α), for all x ∈ B

]
→ 1− α,

for qα = inf{c > 0 : P[supx∈B |Ẑn(x)| ≥ c|W] ≤ α}, where (Ẑn : x ∈ B) is a Gaussian pro-

cess conditional on W with E[Ẑn(x1)|W] = 0 and E[Ẑn(x1)Ẑn(x2)|W] = Ω̂x1,x2/
√
Ω̂x1,x1Ω̂x2,x2,

for all x1,x2 ∈ B.

This theorem gives valid pointwise and inference procedures for the boundary treatment effect

τ(x) based on the bivariate local polynomial estimator. Unlike the case of distance-based esti-

mation, the bias condition is the same for x ∈ B, making implementation substantially easier.

However, as in the case of Theorem 2, and additional technical restriction on B is needed in order

to avoid overly “wiggly” boundary designs that would lead to invalid statistical inference.

4.3 Implementation

The bivariate local polynomial estimator τ̂(x) and associated t-statistic T̂(x) is fully adaptive to

kinks and other irregularities of the boundaryB. Therefore, it is straightforward to implement local

and global bandwidth selectors based on Theorem 4 and the discussion given above. In particular,

replacing the (asymptotic) bias and variance constants, Bx and Vx, with preliminary estimators,
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we obtain the feasible plug-in bandwidth selectors

ĥMSE,p =
( 2V̂x

(2p+ 2)B̂2
x

1

n

)1/(2p+4)
and ĥIMSE,p =

( 2
∫
B
V̂xw(x)dx

(2p+ 2)
∫
B
B̂2

xw(x)dx

1

n

)1/(2p+4)
,

where B̂x is an appropriate estimator of Bx, and V̂x = nh2Ω̂x,x. Omitted details are given in the

supplemental appendix. These bandwidth choices can now be used to implement (I)MSE-optimal

τ̂(x) point treatment effect estimators pointwise and uniformly along the boundary B. Further-

more, leveraging the results in Theorem 5, a simple application of robust bias-corrected inference

proceeds by employing the same (I)MSE-optimal bandwidth (for pth order point estimation), but

then constructing the t-statistic T̂(x) with a choice of p+1 (instead of p). This inference approach

has several theoretical advantages (Calonico et al., 2014, 2018, 2022), and has been validated empiri-

cally (Hyytinen et al., 2018; De Magalhães et al., 2025). Our companion software, rd2d, implements

the procedures described above.

5 Empirical Applications

We illustrate our proposed methodology with the SPP application. We consider both distance-

based and bivariate estimation and inference. The data set has n = 363, 096 complete observa-

tions for the first cohort of the program (2014). Each observation corresponds to one student,

and the bivariate score Xi = (X1i, X2i)
⊤ = (SABER11i, SISBENi)

⊤ is composed by the student’s

SABER11 test score (ranging from −310 to 172) and SISBEN wealth index (ranging from −103.41

to 127.21). As discussed in the introduction, and without loss of generality, the score is recentered

at the corresponding cutoff for program eligibility, so that the treatment assignment boundary is

B = {(SABER11, SISBEN) : (SABER11, SISBEN) ∈ {SABER11 ≥ 0 and SISBEN = 0} ∪ {SABER11 =

0 and SISBEN ≥ 0}}, as shown in Figure 1a. Furthermore, also without loss of generality, each

dimension of Xi is standardized in order to more naturally accommodate a common bandwidth

h. The main outcome of interest is an indicator variable equal to one if the student enrolled in a

higher education institution after receiving the SPP subsidy, or equal to zero otherwise.

Recall that Figure 1a in the introduction plotted the bivariate score (centered, but without

standardization), as well as the assignment boundary determining treatment assignment. Figure 3a
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(a) Outcome: College enrollment (b) Outcome: Mother’s education (placebo)

Figure 3: Boundary Treatment Effect Estimation and Inference (SPP application).

presents the empirical results using our proposed methods, both pointwise across the 40 boundary

points depicted in 1a and uniformly over B. The fidings are highlight statistically significant,

indicating some degree of heterogeneity in treatment effects across the boundary. On the one hand,

as students become less wealthy (going from b1 to b21), the treatment effects appear to be fairly

stable. On the other hand, as students exhibit higher academic performance (going from b21 to

b40), treatment effects appear to decrease.

To demonstrate the credibility of the boundary discontinuity design, we repeat the empirical

analysis using pre-intervention covariates. This corresponds to a standard “placebo” analysis,

where the treatment effect is expected to be statistically indistinguishable from zero. Figure 3b

shows that this is indeed the case when Yi is taken to be mother’s education of the student; see the

supplemental appendix for other examples.

6 Conclusion

We studied the pointwise and uniform statistical properties of the two most popular local polynomial

methods for treatment effect estimation and inference in boundary discontinuity designs. Our

theoretical and numerical results demonstrated that methods based on the univariate distance to

the assignment boundary can exhibit a large bias in the presence of kinks or other irregularities

of B. In contrast, methods based on the bivariate score do not suffer from those problems, and
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thus can perform better in applications. We thus recommend employing bivariate local polynomial

analysis whenever possible in boundary discontinuity designs. Our companion software package

rd2d offers general-purpose implementations of all the estimation and inference methods developed

in this paper, and is available at https://rdpackages.github.io/rd2d.

A Distance-based Minimax Convergence Rate

The following theorem presents a minimax result for estimation of bivariate nonparametric functions

employing a class of estimators based on distance to the boundary of the support of the independent

variables.

Theorem 6 (Distance-based Minimax Convergence Rate). For p ∈ N, L > 0, let P be the class of

probability laws P of (Yi,Xi : 1 ≤ i ≤ n) i.i.d taking values in R×R2, and satisfying the following:

(i) Xi admits a Lebesgue density fX that is continuous on its compact support X ⊆ [−L,L]2,

with L−1 ≤ infx∈X fX(x) ≤ supx∈X fX(x) ≤ L, and B = bd(X) is a rectifiable curve.

(ii) µ(x) = E[Yi|Xi = x] is p-times continuously differentiable on X with

max
0≤|ν|≤p

sup
x∈X

|∂νµ(x)|+ max
0≤|ν|≤p

sup
x,y∈X

|∂νµ(x)− ∂νµ(y)|
∥x− y∥

≤ L.

(iii) σ2(x) = V[Yi|Xi = x] is continuous on X with L−1 ≤ infx∈X fX(x) ≤ supx∈X fX(x) ≤ L.

In addition, let T be the class of all distance-based estimators T (x;W) with W = (Yi, ∥Xi − x∥ :

1 ≤ i ≤ n) for each x ∈ X. Then,

inf
T∈T

sup
P∈P

EP

[
sup
x∈B

∣∣T (x;W)− µ(x)
∣∣] ≳ n−1/4,

where EP[·] denotes an expectation taken under the data generating process P.

Under the imposed assumptions, a classical results for the minimax rate of the uniform inference

problem is infS∈S supP∈P EP

[
supx∈B

∣∣S(x)−µ(x)
∣∣] ≍

√
log nn−(p+1)/(2p+2) (Stone, 1982), where S

is the (unrestricted class) of all estimators based on (Yi,Xi : 1 ≤ i ≤ n). We show that if we restrict

the class of estimators to only using the distance ∥Xi − x∥ instead of Xi for estimation of µ(x),

then for any such estimator there is a data generating process such that the maximum estimation
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error along the boundary is at least of order n−1/4, when the boundary can have possibly countably

many kinks.

We show the p-th order distance based local polynomial estimator µ̂dis(x) = e⊤1 γ̂(x) with

γ̂(x) = argmin
γ∈Rp+1

En

[(
Yi − rp(Di(x))

⊤γ
)2
kh(Di(x))

]
, x ∈ B,

satisfies

lim sup
M→∞

lim sup
n→∞

sup
P∈P

P
(
sup
x∈B

|θ̂x(0)− µ(x)| ≥ Mn−1/4
√

log n
)
= 0.

This shows that the distance-based local polynomial estimator is optimal up to polylog(n) terms

among the restricted class of estimators T.

References

Black, S. E. (1999), “Do Better Schools Matter? Parental Valuation of Elementary Education,”

Quarterly Journal of Economics, 114, 577–599.

Calonico, S., Cattaneo, M. D., and Farrell, M. H. (2018), “On the Effect of Bias Estimation on

Coverage Accuracy in Nonparametric Inference,” Journal of the American Statistical Association,

113, 767–779.

(2020), “Optimal Bandwidth Choice for Robust Bias Corrected Inference in Regression

Discontinuity Designs,” Econometrics Journal, 23, 192–210.

(2022), “Coverage Error Optimal Confidence Intervals for Local Polynomial Regression,”

Bernoulli, forthcoming.

Calonico, S., Cattaneo, M. D., and Titiunik, R. (2014), “Robust Nonparametric Confidence Inter-

vals for Regression-Discontinuity Designs,” Econometrica, 82, 2295–2326.

Cattaneo, M. D., Idrobo, N., and Titiunik, R. (2020), A Practical Introduction to Regression

Discontinuity Designs: Foundations, Cambridge University Press.

25



(2024), A Practical Introduction to Regression Discontinuity Designs: Extensions, Cam-

bridge University Press.

Cattaneo, M. D., and Titiunik, R. (2022), “Regression Discontinuity Designs,” Annual Review of

Economics, 14, 821–851.

Cattaneo, M. D., and Yu, R. R. (2025), “Strong Approximations for Empirical Processes Indexed

by Lipschitz Functions,” Annals of Statistics.

De Magalhães, L., Hangartner, D., Hirvonen, S., Meriläinen, J., Ruiz, N. A., and Tukiainen, J.
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Londoño-Vélez, J., Rodŕıguez, C., and Sánchez, F. (2020), “Upstream and downstream impacts of

college merit-based financial aid for low-income students: Ser Pilo Paga in Colombia,” American

Economic Journal: Economic Policy, 12, 193–227.

Reardon, S. F., and Robinson, J. P. (2012), “Regression Discontinuity Designs with Multiple Rating-

Score Variables,” Journal of Research on Educational Effectiveness, 5, 83–104.

Simon, L. et al. (1984), Lectures on geometric measure theory, Centre for Mathematical Analysis,

Australian National University Canberra.

Stone, C. J. (1982), “Optimal Global Rates of Convergence for Nonparametric Regression,” Annals

of Statistics, 10, 1040–1053.

Wellner, J. et al. (2013), Weak convergence and empirical processes: with applications to statistics,

Springer Science & Business Media.

27


	Introduction
	Setup
	Notation

	Analysis based on Univariate Distance
	Identification and Interpretation
	Bias Along the Boundary
	Treatment Effect Estimation and Inference
	Implementation and Discussion

	Analysis based on Bivariate Location
	Treatment Effect Estimation and Inference
	Uncertainty Quantification
	Implementation

	Empirical Applications
	Conclusion
	Distance-based Minimax Convergence Rate

