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Abstract

Recursive decision trees have emerged as a leading methodology for heterogeneous causal

treatment effect estimation and inference in experimental and observational settings. These

procedures are fitted using the celebrated CART (Classification And Regression Tree) algorithm

[Breiman et al., 1984], or custom variants thereof, and hence are believed to be “adaptive” to

high-dimensional data, sparsity, or other specific features of the underlying data generating

process. Athey and Imbens [2016] proposed several “honest” causal decision tree estimators,

which have become the standard in both academia and industry. We study their estimators,

and variants thereof, and establish lower bounds on their estimation error. We demonstrate

that these popular heterogeneous treatment effect estimators cannot achieve a polynomial-in-n

convergence rate under basic conditions, where n denotes the sample size. Contrary to common

belief, honesty does not resolve these limitations and at best delivers negligible logarithmic

improvements in sample size or dimension. As a result, these commonly used estimators can

exhibit poor performance in practice, and even be inconsistent in some settings. Our theoretical

insights are empirically validated through simulations.
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1 Introduction

Athey and Imbens [2016] proposed to use recursive decision trees to estimate (and later conduct

inference about) heterogeneous causal effects in experimental and observational settings. Their

methodology is often called “honest” causal trees. Due in part to its simple, interpretable structure,

their causal inference methodology has been widely adopted in academic and industry empirical

research over the last decade. For example, to advocate for their proposal, the authors wrote that

“[i]t enables researchers to let the data discover relevant subgroups while preserving the validity of

confidence intervals constructed on treatment effects within subgroups” [Athey and Imbens, 2016,

page 7353].

Despite the widespread use of honest causal tree estimators, little is known about their theoret-

ical properties for estimation and inference. Existing results typically require very strong assump-

tions on the tree-growing process [Wager and Athey, 2018], which we show are incompatible with

canonical implementations of causal trees under basic conditions. Specifically, this paper establishes

lower bounds on the estimation error of heterogeneous treatment effect estimators based on recur-

sive adaptive partitioning. We demonstrate that such estimators cannot achieve a polynomial-in-n

convergence rate under basic conditions, where n denotes the sample size. Instead, these popu-

lar estimators can exhibit arbitrarily slow convergence rates, if not become inconsistent in some

cases. As a consequence, our theoretical insights demonstrate that honest causal tree estimators,

and variant thereof, may be inaccurate for estimating heterogeneous causal effects, and invalid for

constructing confidence intervals on treatment effects within subgroups.

Our work in the causal setting also complements the rich existing theoretical analyses of recur-

sive adaptive partitioning estimators for regression [Scornet et al., 2015, Chi et al., 2022, Klusowski

and Tian, 2024, Cattaneo et al., 2024, Mazumder and Wang, 2024] and contributes to the small but

growing body of negative results. For example, Ishwaran [2015] showed that regression trees via

CART methodology [Breiman et al., 1984] can create imbalanced cells containing a small number

of samples. Tan et al. [2022] proved that regression trees are inefficient at estimating additive struc-

ture, regardless of the way in which they are optimized. Tan et al. [2024b] proved that mixing times

for Bayesian Additive Regression Trees (BART) [Chipman et al., 2010] can increase with the train-

ing sample size. Finally, Tan et al. [2024a] established that adaptive regression trees with Boolean

covariates can require exponentially many samples in the dimension and are high-dimensional in-

consistent for learning ANOVA decompositions with certain interaction patterns.

The present paper supersedes the unpublished manuscript by Cattaneo, Klusowski, and Tian

[2022], which showed that a one-dimensional regression stump (i.e., single-split regression trees

with a single covariate) constructed via CART can suffer arbitrarily slow convergence rates, and

furthermore conjectured (but did not prove) that causal trees might (i) exhibit the same pathology

and (ii) fail to benefit from honesty. Our paper proves both conjectures, and goes further by

establishing these results for arbitrary covariate dimension and for any causal tree structure with

at least one split (i.e., allowing for an arbitrary number of splits or depth of the causal tree).
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The supplemental appendix also reports analogous results for plain adaptive regression trees. As

sketched in Section 4.1, with full details given in the supplemental appendix, our method of proof

relies on new insights concerning non-asymptotic approximations for the suprema of partial sums

and various Gaussian processes, which may be of independent theoretical interest. In particular,

we correct an error in Eicker [1979].

2 Setup

The available data D = {(yi,x
⊤
i , di) : i = 1, 2, . . . , n} is a random sample, where yi is an outcome

variable, xi = (x1,1, . . . , x1,p)
⊤ is a vector of (pre-treatment) covariates, and di is a binary treatment

indicator. Employing standard potential outcomes notation [see, e.g., Hernán and Robins, 2020,

for an introduction], we assume that

yi = yi(1)di + yi(0)(1 − di),

where yi(1) is the potential outcome under treatment assignment (di = 1), and yi(0) is the potential

outcome under control assignment (di = 0). In classical experimental settings, the treatment

assignment mechanism is independent of both the potential outcomes and the covariates, that is,

(yi(0), yi(1),x⊤
i ) ⊥⊥ di.

The parameter of interest is the conditional average treatment effect (CATE) function

τ(x) ≡ E
[

yi(1) − yi(0)
∣

∣xi = x
]

,

which captures average treatment effects for different values of observable (pre-treatment) covari-

ates. In experimental settings, the CATE function is identifiable because

τ(x) = E
[

yi
∣

∣di = 1, xi = x
]

− E
[

yi
∣

∣di = 0, xi = x
]

(1)

= E

[

yi
di − ξ

ξ(1 − ξ)

∣

∣

∣

∣

∣

xi = x

]

, (2)

where the probability of treatment assignment ξ = P(di = 1) is known by virtue of the known

randomization mechanism. The first equality (1) represents τ(x) as the difference of two conditional

expectation functions based on observed data, while the second equality (2) represents τ(x) as a

single conditional expectation of the “transformed” outcome yi
di−ξ
ξ(1−ξ) .

Traditional semiparametric methods would replace the unknown conditional expectations by

estimators thereof to learn about heterogeneous treatment effects from experimental data. These

methods do not cope well with high-dimensional data, sparsity, or other unknown specific features

of the data generating process. Motivated by the recent success of modern (adaptive) machine

learning methods, Athey and Imbens [2016] proposed to estimate τ(x) using recursive decision

trees. While retaining the core ideas underlying the greedy recursive construction via standard
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CART, their proposals customized the tree splitting criterion to the causal inference setting, and

employed sample splitting (the so-called “honesty” property) to de-couple the tree construction

from the estimation of τ(x) on the terminal nodes of the tree. This honesty modification has

been viewed as a natural “fix,” since separating model selection from estimation is believed to

reduce overfitting and improve the validity of inference. Despite this prevailing view, we show that

honesty cannot overcome the fundamental limitations of recursive partitioning for heterogeneous

causal effect estimation (or for plain adaptive regression trees), offering only at best negligible

logarithmic improvements in sample size or dimension.

We perform a comprehensive study of the estimation accuracy of nine distinct causal tree meth-

ods, which differ on how their three key underlying parts are implemented: (i) CATE estimator,

(ii) tree construction, and (iii) sample splitting.

2.1 CATE Estimator

Leveraging the identification results in (1)–(2), Athey and Imbens [2016] considered the following

two CATE estimators based on a tree T and a dataset Dτ . Sections 2.2 and 2.3 discuss specific

choices of T and Dτ , respectively. Let 1(·) be the indicator function.

Definition 1 (CATE Estimators). Suppose T is the tree used, and Dτ = {(yi, di,x
⊤
i ) : i =

1, 2, . . . , nτ}, with nτ ≤ n, is the dataset used. Let t be the unique terminal node in T containing

x ∈ X.

• The Difference-in-Means (DIM) estimator is

τ̂DIM(x;T,Dτ ) =
1

n1(t)

∑

i:xi∈t

diyi −
1

n0(t)

∑

i:xi∈t

(1 − di)yi,

where nd(t) =
∑nτ

i=1 1(xi ∈ t, di = d), for d = 0, 1, are the “local” sample sizes. We set

τ̂DIM(x;T,Dτ ) = 0 whenever n0(t) = 0 or n1(t) = 0.

• The Inverse Probability Weighting (IPW) estimator is

τ̂IPW(x;T,Dτ ) =
1

n(t)

∑

i:xi∈t

di − ξ

ξ(1 − ξ)
yi,

where n(t) = n0(t)+n1(t) =
∑nτ

i=1 1(xi ∈ t) is the “local” sample size. We set τ̂IPW(x;T,Dτ ) =

0 whenever n(t) = 0.

Both estimators, τ̂DIM(x;T,Dτ ) and τ̂IPW(x;T,Dτ ), rely on localization near x via the tree con-

struction: T forms a partition of the support of the covariates X, and estimation of τ(x) uses only

observations with covariates xi belonging to the cell in the partition covering x ∈ X. Therefore,

given a tree (or partition), both estimators can be represented as nonparametric partitioning-based

estimates of τ(x). See Györfi et al. [2002], Cattaneo et al. [2020], Cattaneo et al. [2025], and

references therein.
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Since the estimators τ̂DIM(x;T,Dτ ) and τ̂IPW(x;T,Dτ ) output a constant fit for all x within each

terminal node of T (or cell in the partition), we define

τ̂l(t;T,Dτ ) = τ̂l(x;T,Dτ ), l ∈ {DIM, IPW}, x ∈ t,

for all terminal nodes t of T.

2.2 Tree Construction

An axis-aligned recursive decision tree is a predictive model that makes decisions by repeatedly

splitting the data into subsets based on both outcome and covariate values. At each node, the

algorithm selects the feature and threshold that best separate the data according to some criterion

(e.g., squared error, Gini impurity, or entropy), and this process continues recursively until a

stopping condition is met (e.g., maximum depth or pure terminal nodes). See Berk [2020], Zhang

and Singer [2010], and references therein.

The most popular implementation of recursive decision trees is via the CART algorithm, which

proceeds in a top-down, greedy manner through recursive binary splitting. Given a dataset DT =

{(yi, di,x
⊤
i ) : i = 1, 2, . . . , nT}, with nT ≤ n, a parent node t in the tree (i.e., a region in X) is

divided into two child nodes, tL and tR, by minimizing the sum-of-squares error (SSE),

min
1≤j≤p

min
βL,βR,ς∈R

∑

xi∈t

(

yi − βL1(xij ≤ ς) − βR1(xij > ς)
)2
, (3)

where the solution yields estimates (β̂L, β̂R, ς̂ , ȷ̂), being the two child nodes average output, split

point and split direction, respectively. Because the splits occur along values of a single covariate,

the induced partition of the input space X is a collection of hyper-rectangles, and hence the

resulting refinement of t produces child nodes tL = {x ∈ t : e⊤ȷ̂ x ≤ ς̂} and tR = {x ∈ t : e⊤ȷ̂ x > ς̂}.

More precisely, the normal equations imply that β̂L = 1
n(tL)

∑

xi∈tL
yi and β̂R = 1

n(tR)

∑

xi∈tR
yi, the

respective sample means after splitting the parent node at e⊤ȷ̂ x = ς̂. These child nodes become

new parent nodes at the next level of the tree construction, and can be further refined in the same

manner, and so on and so forth, until a desired depth K is reached. While not every parent node

needs to generate a new child node in a recursive tree construction, a maximal decision tree of depth

K is a particular instance where the construction is iterated K times until (i) the node contains a

single data point (yi,x
⊤
i ) or (ii) all input values xi and/or all response values yi within the node

are the same.

Building on the CART algorithm, Athey and Imbens [2016] proposed the following two custom

criteria for constructing a tree T to implement their causal tree estimators.

Definition 2 (Tree Construction). Suppose DT = {(yi, di,x
⊤
i ) : i = 1, 2, . . . , nT}, with nT ≤ n,

is the dataset used to construct the tree T. There is a unique node t0 = X at initialization, and

child nodes are generated by iterative axis-aligned splitting of the parent node based on either of the

following two rules.
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• Variance Maximization: A parent node t (i.e., a terminal node partitioning X) in a previous

tree T
′ is divided into two child nodes, tL and tR, forming the new tree T, by maximizing

n(tL)n(tR)

n(t)

(

τ̂l(tL;T,DT) − τ̂l(tR;T,DT)
)2

, l ∈ {DIM, IPW}. (4)

Assuming at least one split, the two final causal trees are denoted by T
DIM(DT) and T

IPW(DT),

respectively.

• SSE Minimization: A parent node t (i.e., a terminal node partitioning X) in the previous

tree T
′ is divided into two child nodes, tL and tR, forming the next tree T, by solving

min
aL,bL,aR,bR∈R

∑

xi∈tL

(yi − aL − bLdi)
2 +

∑

xi∈tR

(yi − aR − bRdi)
2, (5)

where only the data DT is used. Assuming at least one split, the final causal tree is denoted

by T
SSE(DT).

The variance maximization splitting criterion is somewhat different than the original CART

criteria (3), since it explicitly selects splits based on maximizing the squared difference of the

child treatment effect estimates. For the IPW estimator, this rule is equivalent to applying the

CART criterion in (3) to the transformed outcome ỹi = yi
di − ξ

ξ(1 − ξ)
. This transformation satisfies

E[ỹi | xi = x] = τ(x) for all x ∈ X, and thus CART operates on an outcome whose conditional

mean equals the CATE. The DIM estimator follows the same idea of predicting the within-node

average treatment effect, but it constructs these predictions somewhat differently.

The SSE Minimization criterion resembles the original CART criteria (3), but its formulation

still targets treatment effect heterogeneity as the splitting criteria: in Section SA-3.3 of the sup-

plemental appendix we show that the objective function (5) can be recast as maximization of the

sum of variances of treatment and control group outcomes given by

n1(tL)n1(tR)

n1(t)

( 1

n1(tL)

∑

i:xi∈tL

diyi −
1

n1(tR)

∑

i:xi∈tR

diyi

)2

+
n0(tL)n0(tR)

n0(t)

( 1

n0(tL)

∑

i:xi∈tL

(1 − di)yi −
1

n0(tR)

∑

i:xi∈tR

(1 − di)yi

)2
.

Each of the causal recursive tree constructions leads to a distinct data-driven partition of X.

A key observation in this paper is that they do not generate quasi-uniform partitions, and thus

known results in the nonparametric partitioning-based estimation literature [Györfi et al., 2002,

Cattaneo et al., 2020, 2025] are not applicable. The supplemental appendix considers other recursive

partitioning constructions, including the standard CART algorithm and variants thereof.
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2.3 Sample Splitting

The final ingredient of the causal tree estimators concerns the data used at each stage of their

construction. It is believed that de-coupling the CATE estimation (Definition 1) from the tree

implementation (Definition 2) can lead to better performance of the final estimator. In practice,

this approach corresponds to sample splitting, and Athey and Imbens [2016] and others referred

to it as “honesty.” To avoid confusion, we emphasize that procedures without sample splitting are

not “dishonest” in any formal sense; they are simply harder to analyze formally.

To elucidate the relative merits of sample splitting, we consider two distinct scenarios: (i) no

sample splitting, where the same data is used throughout (as the original CART procedure is often

implemented); and (ii) honesty, where two independent datasets are used, one for tree construction

and the other for CATE estimation (these are the procedures proposed by Athey and Imbens [2016]

and many others). Formally, we consider the following data usages and resulting treatment effect

estimators.

Definition 3 (Sample Splitting and Estimators). Recall Definition 1 and Definition 2, and that

D = {(yi,x
⊤
i , di) : i = 1, 2, . . . , n} is the available random sample.

• No Sample Splitting (NSS): The dataset D is used for both the tree construction and the

treatment effect estimation, that is, DT = D and Dτ = D. The causal tree estimators are

τ̂NSS
DIM

(x) = τ̂DIM(x;TDIM(D),D),

τ̂NSS
IPW

(x) = τ̂IPW(x;TIPW(D),D), and

τ̂NSS
SSE

(x) = τ̂DIM(x;TSSE(D),D).

• Honesty (HON): The dataset D is divided in two independent datasets DT and Dτ with sample

sizes nT and nτ , respectively, and satisfying n ≲ nT, nτ ≲ n. The causal tree estimators are

τ̂HON
DIM

(x) = τ̂DIM(x;TDIM(DT),Dτ ),

τ̂HON
IPW

(x) = τ̂IPW(x;TIPW(DT),Dτ ), and

τ̂HON
SSE

(x) = τ̂DIM(x;TSSE(DT),Dτ ).

The no-sample-splitting and honesty data usages are commonly encountered in the literature,

and thus our results will speak directly to theoretical, methodological and empirical work relying

on these sample splitting designs. While the estimators τ̂NSSl (x) and τ̂HONl (x), l ∈ {DIM, IPW, SSE},

depend on the depth of the tree construction used, our notation does not make this dependence

explicit because our results apply whenever at least one split takes place. See Section 5 for more

discussion, and a setting where the number of splits is assumed to increase with the sample size.
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3 Assumptions

We impose the following assumption throughout the paper.

Assumption 1 (Data Generating Process). D = {(yi, di,x
⊤
i ) : 1 ≤ i ≤ n} is a random sample,

where yi = diyi(1) + (1 − di)yi(0), xi = (xi,1, . . . , xi,p)
⊤, and the following conditions hold for all

d = 0, 1 and i = 1, 2, . . . , n.

(i) (yi(0), yi(1),xi) ⊥⊥ di, and ξ = P(di = 1) ∈ (0, 1).

(ii) yi(d) = µd(xi) + εi(d), with E[εi(d)|xi] = 0 and xi ⊥⊥ εi(d).

(iii) µd(x) = cd for all x ∈ X, where cd is some constant and X is the support of xi.

(iv) xi,1, . . . , xi,p are independent and continuously distributed.

(v) There exists α > 0 such that E[exp(λεi(d))] < ∞ for all |λ| < 1/α and E[ε2i (d)] > 0.

Assumption 1(i) corresponds to simple randomized experiments. Assumption 1(ii) further as-

sumes a canonical homoskedastic causal regression model, while Assumption 1(iii) implies that

there is no heterogeneity in the causal treatment effect τ = c1 − c0. Because trees are invariant

with respect to monotone transformations of the coordinates of xi, without loss of generality, As-

sumption 1(iv) can be replaced by the assumption that covariates are uniformly distributed on

X = [0, 1]p, i.e., xi,j
i.i.d.∼ Uniform([0, 1]) for j = 1, 2, . . . , p. Finally, Assumption 1(v) means that

potential outcome errors are sub-exponential, or equivalently, they satisfy a Bernstein moment

condition.

Since we are interested in establishing lower bounds on the estimation accuracy of the causal

tree estimators in Definition 3, it is sufficient to consider the constant treatment effect model

in Assumption 1 for several reasons. First, this statistical model is a canonical member of any

interesting class of data generating processes because the constant function belongs to all classical

smoothness function classes, as well as to the set of functions with bounded total variation. It

follows that our results will shed light in settings where uniformity over any of the aforementioned

classes of functions is of interest: our lower bounds can be applied directly in those cases because

for any estimator τ̂(x) of the parameter τ(x),

sup
P∈P

P

(

sup
x∈X

|τ̂(x) − τ(x)| > ϵ
)

≥ P1

(

sup
x∈X

|τ̂(x) − τ(x)| > ϵ
)

,

for all ϵ > 0, and for any data generating class P that includes the distribution P1 satisfying

Assumption 1. In fact, the constant treatment effect model is a canonical case to consider in causal

inference.

Second, Assumption 1 also removes issues related to smoothing (or misspecification) bias, het-

eroskedasticity, and heavy tail distributions. In particular, since the CATE function τ(x) is constant

8



for all x ∈ X, our results will not be driven by standard (boundary or other smoothing) bias in

nonparametrics. For example, if the distributions of εi(0) and εi(1) are symmetric about zero,

E[τ̂ ql (x)] = τ, q ∈ {NSS}, and E[τ̂HONl (x)] = τ − τP(n(t) = 0),

for l ∈ {DIM, IPW, SSE} and x ∈ t where t is a terminal node in the tree. Unbiasedness of τ̂NSSl (x)

follows from the fact that the split points are symmetric functions of the residuals. In the case

of τ̂HONl (x), sample splitting can generate empty cells with positive probability, which is captured

by the term τP(n(t) = 0); see Lemma SA-37 in the supplemental appendix. It follows that, in

particular, τ̂HONl (x) is unbiased when τ = 0 (or for any other known treatment effect value), as

well as in tree constructions ensuring that P(n(t) = 0) = 0; otherwise, τ̂HONl (x) is asymptotically

unbiased whenever P(n(t) = 0) → 0 as n → ∞. Our results will be driven by the fact that

canonical adaptive decision tree constructions can generate small cells containing only a handful of

observations, thereby making the estimator highly inaccurate in some regions of X, regardless of

bias. In other words, inconsistency is due to a large variance problem, not a large bias problem.

Third, the local constant treatment effect model could also be interpreted as a first-order ap-

proximation of the smooth function τ(x). Because the recursive partitioning schemes lead to a

partitioning-based estimator of the CATE function, it follows that τ(x) is approximated locally

by a Haar basis (piecewise constant functions). In fact, our results can be extended to hold uni-

formly over appropriate shrinking neighborhoods of smooth functions local to the constant function,

provided that the signal to noise ratio (bias-variance trade-off) is small.

4 Main Results

The following theorem summarizes our first main result. Let e denote Euler’s constant.

Theorem 1 (Uniform Accuracy). Suppose Assumption 1 holds, and the underlying causal tree has

at least one split (i.e., at least two terminal nodes). Then, for l ∈ {DIM, IPW, SSE} and all b ∈ (0, 1),

lim inf
n→∞

P

(

sup
x∈X

∣

∣τ̂NSSl (x) − τ(x)
∣

∣ ≥ C1n
−b/2

√

log logn
)

≥ b/e,

where the positive constant C1 only depends on the distribution of (εi(0), εi(1), di), and

lim inf
n→∞

P

(

sup
x∈X

∣

∣τ̂HONl (x) − τ(x)
∣

∣ ≥ C2n
−b/2

)

≥ C3b,

where the positive constants C2 and C3 only depend on the distribution of (εi(0), εi(1), di), and

the sample splitting scheme via lim infn→∞
nT

nτ
and lim supn→∞

nT

nτ
. The precise definitions of the

constants are given in the supplemental appendix.

Section 4.1 gives an overview of the proof strategy of Theorem 1, with all omitted technical

details given in the supplemental appendix (see Section SA-1.2 for details). Our proof relies on
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several non-asymptotic approximation steps for the suprema of partial sums and various Gaussian

processes leveraging key technical results from Chernozhukov et al. [2017], Chernozhuokov et al.

[2022], Csörgö and Révész [1981], Csörgö and Horváth [1997], Eicker [1979], El-Yaniv and Pechyony

[2009], Göing-Jaeschke and Yor [2003], Horváth [1993], Lata la and Matlak [2017], Petrov [2007],

Shorack and Smythe [1976], and Skorski [2023]. As a technical by-product, we correct a mistake in

Eicker [1979]: see Remark SA-1 in the supplemental appendix.

Theorem 1 presents precise lower bounds on the uniform convergence rate of the six causal tree

estimators introduced in Section 2. Starting with procedures that do not employ sample splitting,

Theorem 1 demonstrates that the three estimators τ̂NSS
DIM

(x), τ̂NSS
IPW

(x) and τ̂NSS
SSE

(x) cannot achieve

a uniform convergence rate of n−b/2
√

log logn, for any b > 0. That is, they must have a worse

than polynomial-in-n uniform convergence rate, and thus suffer from low accuracy in estimating

heterogeneous treatment effects in certain regions of the support X.

Athey and Imbens [2016], and many others, argue that sample splitting (the so-called “honesty”

property) can improve the performance of machine learning estimators, and in particular their pro-

posed causal tree estimators, because such sample usage de-couples the causal tree construction and

the CATE estimation steps. The second result in Theorem 1 considers exactly their honest causal

tree estimators, τ̂HON
DIM

(x), τ̂HON
IPW

(x) and τ̂HON
SSE

(x). It follows from the theorem that these estimators

cannot achieve a uniform convergence rate that is polynomial-in-n either. Notably, our results show

that sample splitting (or honesty) improves the best achievable uniform convergence rate of the

estimators, but this improvement is quite modest: the penalty term
√

log logn is removed, thereby

improving the uniform convergence rate by a very slow factor.

The results in Theorem 1 offer a pessimistic outlook on the utility of adaptive decision tree

methods in causal inference when the goal is to learn about heterogeneous treatment effects: the

estimators cannot perform well pointwise (and hence uniformly) over the entire support of the

covariates; see Section 4.1 for more formal details. As a point of contrast, the same procedures

considered in Theorem 1 can achieve near-optimal convergence rates “on average” over X, as the

following theorem establishes. Here again, honesty delivers only negligible improvements of order

log(p).

Theorem 2 (Mean Square Accuracy). Suppose Assumption 1 holds and the underlying causal tree

has depth at most K ≥ 1, and let FX(x) = P(xi ≤ x). Then, for l ∈ {DIM, IPW, SSE},

E

[

∫

X

∣

∣τ̂NSSl (x) − τ(x)
∣

∣

2
dFX(x)

]

≤ C1
2K log4(n) log(np)

n
,

where the constant C1 only depends on the distribution of (εi(0), εi(1), di), and

E

[

∫

X

∣

∣τ̂HONl (x) − τ(x)
∣

∣

2
dFX(x)

]

≤ C2
2K log5(n)

n
,

provided that ρ ≤ nT/nτ ≤ 1 − ρ for some ρ ∈ (0, 1), and the constant C2 only depends on ρ and

the distribution of (εi(0), εi(1), di).
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The proof of this theorem is given in the supplemental appendix (see Section SA-1.2 for details).

It leverages ideas and technical results from Györfi et al. [2002] and Klusowski and Tian [2024].

Crucially, the result applies only when Assumption 1 holds, that is, when τ(x) is constant. The main

purpose of Theorem 2 is to demonstrate that in the same basic setting when uniform convergence

fails, causal decision trees nonetheless achieve favorable performance on average in an integrated

mean-squared sense. A natural way to interpret the juxtaposition between Theorem 1 and Theorem

2 is related to the often claimed tension between causal inference and prediction in machine learning

settings: adaptive causal trees can perform poorly pointwise (hence uniformly), but excellently on

average, over the feature space.

From a technical perspective, the results in Theorem 2 are new in the context of causal tree

estimation and, notably, for the formal comparison between no-sample-splitting and honest im-

plementations. Furthermore, our theoretical work in the supplemental appendix establishes the

integrated mean-squared error bounds with high-probability, enabling a sharper comparison with

Theorem 1. For example, for the case of no-sample-splitting, we show that

lim sup
n→∞

P

(

∫

X

∣

∣τ̂NSSl (x) − τ(x)
∣

∣

2
dFX(x) ≥ C1

2K log4(n) log(np)

n

)

= 0,

where C1 is the constant in Theorem 2.

4.1 Proof Strategy of Theorem 1

Underlying our theoretical insights are a collection of technical results concerning a decision stump,

and hence a decision tree of depth one. For each tree splitting criteria and sample splitting design,

we first study the probabilistic properties of the split location at the root node, and thus characterize

the regions of the support X where the first split index is most likely to realize. These theoretical

results also characterize the effective sample size of the resulting child nodes. We establish that with

non-vanishing probability, the first split will concentrate near a region of the boundary of the parent

node (a cell in the partition of X), from the beginning of any tree construction. More precisely,

let ı̂ = n(tL) and ȷ̂ be the CART split index and split variable at the root node, respectively,

with l ∈ {DIM, IPW, SSE}, noticing that the first split coincide for no-sample-splitting and honest

constructions. For each a, b ∈ (0, 1) with a < b and j ∈ {1, 2, . . . , p}, and l ∈ {DIM, IPW, SSE}, we

have

lim inf
n→∞

P
(

na ≤ ı̂ ≤ nb, ȷ̂ = j
)

= lim inf
n→∞

P
(

n− nb ≤ ı̂ ≤ n− na, ȷ̂ = j
)

≥ b− a

2pe
. (6)

The slow uniform convergence rate of a decision stump estimator occurs because the optimal

split point concentrates near the boundary of the support, causing the two nodes in the stump to

be imbalanced, with one containing a much smaller number of samples, and therefore rendering a

situation where local averaging is less accurate. This can be deduced from (6): for each coordinate

j = 1, 2, . . . , p and b ∈ (0, 1), there is non-vanishing b/(pe) probability that the child cells {x ∈ X :

11



xj ≤ ς̂} or {x ∈ X : xj > ς̂} are highly anisotropic and will contain at most nb samples. Thus,

with non-vanishing probability, the causal tree procedures will exhibit arbitrarily slow convergence

rate in a region of X. These results are then carefully recycled to characterize the properties of the

deeper trees: due to their recursive nature, and since p > 1, the problematic regions take the form

of many hyper-rectangles, and will realize anywhere in X, with non-vanishing probability.

The core of proof strategy is to study the tree construction as the maximizer of the split

criterion from (4) and (5), as indexed by the optimal split location and covariate coordinate. We

leverage non-asymptotic high-dimensional central limit theorems, Gaussian comparison inequalities,

Gaussian process embeddings, the Darling-Erdös theorem, and empirical process techniques [El-

Yaniv and Pechyony, 2009, Petrov, 2007, Shorack and Smythe, 1976, Skorski, 2023], as explained

in the following four main steps.

Step 1: Split Criterion Approximation. Using empirical process theory techniques, we establish

an asymptotic equivalence between the split criterion underlying each of the causal tree estimators

and the split criterion of a standard (non-causal) decision regression tree employing CART. For

l = DIM and l = IPW, the latter can be viewed as a standard regression tree with transformed

outcomes yi
di−ξ
ξ(1−ξ) . For l = SSE, approximating process is the sum of two independent split criterion

processes, one with transformed outcome di
ξ yi for treated units, and the other with transformed

outcome 1−di
1−ξ yi for control units. We employ a careful truncation argument to remove extremely

small or large split indices [Csörgö and Horváth, 1997, Theorem A.4.1], where empirical process

techniques are hard to apply.

Step 2: Conditional Gaussian Approximation. We show that, conditional on the covariates

ordering, the square root of the split criterion processes from step 1 can be approximated by

Gaussian processes with the same conditional covariance structure. For l = DIM and l = IPW, we

view the split criterion process as a summation of i.i.d. high-dimensional random vectors, each

entry corresponding to one pair of split index and coordinate. The high-dimensional central limit

theorem of [Chernozhukov et al., 2017, Theorem 2.1] implies that the split criterion process in

high-dimensional vector form is close to a high-dimensional Gaussian random vector with the same

covariance matrix conditional the ordering, the latter can then be interpreted as a Gaussian process

conditional on the ordering. Due to the structure of the splitting criteria, a high-dimensional CLT

for hyper-rectangles is sufficient. For l = SSE, we stack the control and treatment groups process in

a twice as long high-dimensional vector. However, due to the structure the splitting criteria in this

case, we employ instead Chernozhukov et al. [2017, Proposition 3.1], which gives a high-dimensional

CLT for convex sets.

Step 3: Unconditional Gaussian Approximation. For the special case of p = 1, this step is

not necessary because there is only one ordering possible. However, for p > 1, recursive decision

trees find the best split along each dimension of xi, which implies a different ordering of the

vector. Nevertheless, we show that the conditional Gaussian process from step 2 is close to an

unconditional Gaussian process with zero correlation for different split coordinate indexes. Zero

correlation between splits of different coordinates implies that the (sub)-processes corresponding to

12



splitting different coordinates are asymptotically independent, reducing the problem to studying the

arg max of the split criterion over one coordinate. The result is proven by applying a Gaussian-to-

Gaussian comparison inequality [Chernozhuokov et al., 2022, Proposition 2.1], after establishing an

upper bound on the matrix max norm of the difference between the conditional covariance matrix

(which depends on the ordering) and the unconditional covariance matrix (which does not depend

on the ordering). For l = DIM and l = IPW, the results is immediate because the high-dimensional

CLT was established over hyper-rectangles. For l = SSE, the additional error induced by considering

a simple convex sets approximation is be controlled using Nazarov’s inequality [Nazarov, 2003].

Step 4: Lower bound on imbalanced split probability. The unconditional Gaussian approximation

processes from Step 3 take the form of the square Euclidean norm of a univariate (for l ∈ {DIM, IPW})

or bivariate (for l = SSE) Ornstein-Uhlenbeck process, where the split and time of Ornstein-

Uhlenbeck process satisfies a one-to-one transformation [Csörgö and Révész, 1981, Göing-Jaeschke

and Yor, 2003]. Since Darling-Erdös [Eicker, 1979, Horváth, 1993] allows for calculation of the

maximum of norm of an O-U process within any time interval, we can find the lower bound on the

probability of split occurs with a small or large index from (6) with the help of Gaussian correlation

inequality [Lata la and Matlak, 2017, Remark 3 (i)]. In turn, this characterizes precisely the effective

sample sizes of each child node.

The remaining of our proofs leverage the technical insights above, applying then recursively

to understand deeper tree constructions and the concentration in probability properties of the

resulting CATE estimates.

5 X-Adaptivity and Inconsistency

The estimators considered in Theorem 1 either employ the full sample in their entire construction,

or they rely on a two-sample independent split (honesty), where one subsample is use for training

the tree, and the other is used for estimation of the conditional average treatment effects. As

discussed in Devroye et al. [2013], and references therein, X-adaptivity offers a middle ground

between the two sample usage designs considered in Definition 2: the tree construction and the

final estimation step share the same covariates but each step employs different outcomes variables,

that is, the two subsamples are independence conditional on the covariates.

We leverage the idea of X-Adaptivity, and study causal tree estimators where the outcome

variable and treatment indicator are independent across all levels of the tree construction and the

final CATE estimation step, but the same covariates are used throughout. This X-adaptive data

design is of theoretical interest because it offers a bridge between no-sample-splitting and honesty.

The following definition formalizes the construction of the X-adaptive causal tree estimators.

Definition 4 (X-Adaptive Estimation). Recall Definition 1 and Definition 2, and that D =

{(yi,x
⊤
i , di) : i = 1, 2, . . . , n} is the available random sample.

1. The dataset D is divided into K + 1 datasets (DT1
, . . . ,DTK

,Dτ ), with sample sizes given

by (nT1
, . . . , nTK

, nτ ), respectively, and satisfying nT1
= · · · = nTK

= nτ (possibly after
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dropping n mod K data points at random). For each of the datasets Dj = {(yi, di,x
⊤
i ) :

i = 1, . . . , nTj
}, j = 1, . . . ,K, replace {(yi, di) : i = 1, . . . , nTj

} with independent copies

{(ỹi, d̃i) : i = 1, . . . , nTj
}, while keeping the same {xi : i = 1, . . . , nTj

}.

2. The maximal decision tree of depth K, Tl
K(DT1

, · · · ,DTK
), is obtained by iterating K times

the l ∈ {DIM, IPW, SSE} splitting procedures in Definition 2, each time splitting all terminal

nodes until (i) the node contains a single data point (yi, di,x
⊤
i ), or (ii) the input values xi

and/or all (di, yi) within the node are the same.

3. The X-adaptive estimators are

τ̂X
DIM

(x;K) = τ̂DIM(x;TDIM

K (DT1
, . . . ,DTK

),Dτ ),

τ̂X
IPW

(x;K) = τ̂IPW(x;TIPW

K (DT1
, . . . ,DTK

),Dτ ), and

τ̂X
SSE

(x;K) = τ̂DIM(x;TSSE

K (DT1
, . . . ,DTK

),Dτ ).

As in the previous cases, if the distributions of εi(0) and εi(1) are symmetric about zero, then

the X-adaptive estimators are unbiased: E[τ̂Xl (x;K)] = τ , for l ∈ {DIM, IPW, SSE}.

Theorem 3 (Accuracy of X-Adaptive Causal Tree Estimators). Suppose Assumption 1 holds and

additionally that E[ε2i (0)] = E[ε2i (1)]. Then, for l ∈ {DIM, IPW, SSE},

lim inf
n→∞

P

(

sup
x∈X

∣

∣τ̂Xl (x;Kn) − τ(x)
∣

∣ ≥ C1

)

≥ C2,

provided that lim infn→∞
Kn

log logn = κ > 0, and where the positive constants C1 and C2 only depend

on the distribution of (εi(0), εi(1), di) and κ.

Furthermore, for l ∈ {DIM, IPW, SSE} and any K ≥ 1,

E

[

∫

X

(

τ̂Xl (x,K) − τ(x)
)2
dFX(x)

]

≤ C3
K2K

n
,

where the positive constant C3 only depends on the distribution of (εi(0), εi(1), di).

The theorem establishes uniform inconsistency of the X-adaptive causal tree estimator so long

as Kn ≳ log log n. To put this side rate restriction in perspective, if n/Kn ≈ 1 billion then

log log(109) ≈ 3. Therefore, the inconsistency of the estimator will manifest as soon as Kn ≈ 3,

a shallow tree when compared to those commonly encountered in practice (even in settings with

much more moderate sample sizes, that is, with n much smaller than Kn billions). This result also

shows that the integrated mean square error (IMSE) of a uniformly inconsistent X-adaptive causal

tree estimator can nonetheless decay at the optimal
√
n rate, up to a poly-logarithmic-n factor. As

demonstrated before, the performance of the causal tree estimators can vary widely depending on

whether the input x is average or worst case.
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6 Discussion

6.1 Decision Stumps

The phenomenon of generating unbalanced cells in adaptive recursive partitioning schemes has

been observed in various forms since the inception of CART. Historically, this phenomenon has

been called the end-cut preference, where splits along noisy directions tend to concentrate along

the boundary of the parent node. More specifically, considering the standard CART for regression

estimation without sample splitting, Breiman et al. [1984, Theorem 11.1] and Ishwaran [2015,

Theorem 4] showed that in one-dimension (p = 1), for each δ ∈ (0, 1), P(n(tL) ≤ δn or n(tR) ≥
(1 − δ)n) → 1 as n → ∞. If applicable to the context of this paper, their result would only

imply rates in uniform norm slower than any constant multiple of the already nearly optimal rate
√

n/ log log(n), i.e., for any C > 0,

lim inf
n→∞

P

(

sup
x∈X

∣

∣τ̂NSSl (x) − τ(x)
∣

∣ ≥ Cσn−1/2
√

log log(n)
)

= 1.

In contrast, our results hold for all p ≥ 1 and characterize precisely the regions of the support X

where the pointwise rates of estimation are slower than any polynomial-in-n (see Corollary SA-7,

Theorem SA-14, Corollary SA-21 in the supplemental appendix). Thus, past theoretical work is

not strong enough to illustrate the weaknesses of causal trees for pointwise estimation (i.e., prior

lower bounds in the literature would be too loose to be informative). Furthermore, our results

also study settings where sample splitting (honesty) is used, and demonstrate that they cannot

mitigate the low convergence rate of adaptive causal trees under Assumption 1. Last but not least,

our results apply to the causal tree constructions which are different (and more complicated) than

those in plain vanilla CART regression (Definition 2).

6.2 Deeper Trees, Multivariate Covariates, and the Location of Small Cells

Our theoretical results show that, under Assumption 1, the first split of any decision tree con-

struction will generate a small child cell with non-vanishing probability. As a result, and due to

their recursive nature, deeper tree constructions will have multiple regions with too small sam-

ple sizes (with non-vanishing probability). This problem is exacerbated in multiple dimensions

(p > 1), which is exactly the setting where causal tree estimators would be potentially more useful

to uncover treatment effect heterogeneity.

The small regions of the support X, and hence the slower than any polynomial-in-n convergence

rate (or inconsistency) of causal tree estimators, need not occur near a region of the boundary of X.

At each stage in the tree construction, a parent node t will generate two child nodes, one small and

the other large, but the splitting may realize anywhere on t (parent cell) and along any individual

covariate (in xi, or axis), thereby generating problematic hyper-rectangle cells all over the support

X with non-vanishing probability.
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6.3 Regularization and Bias

It is tempting to try to regularize the decision tree estimator in order to eliminate the small cell

problem, and thus improve its convergence rate. For instance, the tree construction algorithm

may not split a parent node if the effective sample size is to small, or it may include a penalty

term for overfitting. However, it is also important to note that adaptive decision tree constructions

purposely select small cells for two opposing reasons: misspecification bias vs. low signal-to-noise

ratio. More precisely, on the one hand, if the unknown conditional expectation function exhibits

high curvature (bias) in a certain region of X, then the tree construction will tend to generate a

small child cell (node) in that region to reduce misspecification bias, which is precisely a celebrated

feature of an “adaptive” procedure. On the other hand, as shown in this paper, small cells also

emerge with non-vanishing probability when there is no misspecification bias in that region, that is,

when the unknown conditional expectation function is locally constant. In practice, it is impossible

to distinguish between the two equality possible scenarios.

Our theoretcal results purposely remove misspecification bias by considering data generating

processes with constant conditional expectation functions. In real application settings, however,

the conditional expectation functions may exhibit heterogeneity (even if locally constant), in which

case regularization to remove small cells may led to large bias in the causal decision tree estimators,

also affecting their convergence rate.

6.4 α-Regularity and Causal Random Forests

Under specific assumptions, Wager and Athey [2018] and others established polynomial-in-n con-

vergence rates for honest causal trees and forests. The slow convergence rates establish in Theorem

1 do not contradict, but are rather precluded by existing polynomial-in-n convergence guarantees in

the literature because they assume that each split generates two child nodes that contain a constant

fraction of the number of observations in the parent node, i.e., n(tL) ≳ n(t) and n(tR) ≳ n(t). The

key assumption is often called α-regularity, because it assumes that the tree construction generates

an α > 0 proportion of the data in each terminal node (cell).

Our theoretical results imply that assumptions such as α-regularity, or variants thereof, which

require balanced cells almost surely, are incompatible with standard decision tree constructions

employing causal trees [Athey and Imbens, 2016] or any other conventional CART methodology

[e.g., Behr et al., 2022, and references therein]. By implication, results for causal random forests

relying on α-regularity, or variants thereof, do not apply to standard recursive partitioning using

CART-type algorithms. Some form of (algorithmic and/or statistical) regularization is needed,

thereby introducing a bias in the estimation as well as additional tuning parameters that would

need to chosen in practice.
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6.5 Decision Tree Regression

The supplemental appendix also studies standard adaptive decision tree regression via CART for

nonparametric estimation of the conditional expectation of an output given a collection of features.

Section SA-2 in the supplemental appendix establishes an analogue of Theorem 1, demonstrating

that adaptive decision tree regression exhibits slow convergence rate or inconsistency, as causal

trees do, depending on the sample splitting design used.

Our results are connected to Bühlmann and Yu [2002] and Banerjee and McKeague [2007], and

subsequent work in the statistical literature. They study large sample properties of the decision

stump without sample splitting with a univariate covariate (p = 1 and K = 1), and show that

the minimizers (β̂L, β̂R, ς̂) in (3) at the root node converge to well-defined population minimizers

(β∗
L
, β∗

R
, ς∗) at a cube-root rate n1/3 when the population minimizers are unique and the population

conditional expectation function is continuously differentiable and has nonzero derivative at ς∗,

among other technical conditions. Thus, our results show that the conclusion in Bühlmann and

Yu [2002] and Banerjee and McKeague [2007] are not uniformly valid over the class of conditional

expectation functions: the exclusion of the constant regression function from the allowed class of

data generating processes is necessary for their results to hold for all values of the scalar covariate.

6.6 Invalidity of Inference Methods

Theorem 1 establishes lower bounds on the uniform convergence rate of causal decision tree estima-

tors. The main technical observation is that these estimation procedures will generate a partition

of X with highly unbalanced cells, where potentially many cells will have a very small number of

samples. These results are established under Assumption 1, which does not assume a parametric

family of distributions on the data, but rather only independence and moment conditions.

From an inference perspective, our results also show that a valid (Gaussian or otherwise) dis-

tributional approximation for the causal decision tree estimators, after perhaps properly centering

and scaling, does not hold in general. The main obstacle is that the effective sample size may

not even increase for the approximation to apply in many regions of X. In particular, standard

inference methods, such as the usual confidence intervals of the form τ̂ ql (x) ± zα · Sd.Err.(τ̂ ql (x))

with zα denoting the usual quantile of the standad Gaussian distribution, Sd.Err.() a standard error

estimator, and q ∈ {NSS, HON, X}, will not deliver asymptotically valid inference for the parameter

of interest τ(x).

7 Simulations

We illustrate the implications of Theorem 1 in the univariate case p = 1. Figure 1 reports the

pointwise root mean squared error RMSE(x) =
{

E
[

(τ̂ q
ℓ (x) − τ)2

]}1/2
, for ℓ ∈ {DIM, IPW, SSE}

and q ∈ {NSS, HON, X}, estimated from 2,000 Monte Carlo replications under τ = µ0 = µ1 = 0,

εi(0), εi(1)
i.i.d.∼ N(0, 1), Xi ∼ Uniform[0, 1], and n = 1,000. For each of the nine causal-tree

estimators, we consider depths K ∈ {1, . . . , 5}, where curves are color-coded by K.
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Figure 1: Plots of root mean-squared error (RMSE) of heterogeneous treatment effect estimation
using nine distinct causal tree methods with depth K = 1, 2, · · · , 5. We chose p = 1, and the
univariate covariate X is supported on [0, 1]. For all methods and depths, the causal tree has
smallest pointwise RMSE near the center of the covariate space, but the performance degrades
as the evaluation points move closer to the boundary. The experiment is conducted with 2,000
Monte-Carlo simulations.

Two patterns emerge across all nine methods: (i) For any fixed K, the pointwise RMSE is

smallest near the center of the covariate space and increases as x approaches the boundary; (ii) For

any fixed x ∈ [0, 1], the RMSE increases with tree depth K. The first pattern is due to the small

cells near boundary predicted by (6), rendering a situation where local averaging is less accurate.

The second is consistent with the X-results of Theorem 1 and, heuristically, extends to NSS and HON:

at higher depths, a larger fraction of evaluation points lie near terminal node boundaries, where

the same boundary effects that govern decision stumps degrade performance, leading to increased

RMSE even for interior points.

Acknowledgments

The authors thank Benjamin Budway, Max Farrell, Boris Hanin, Felix Hoefer, Michael Jansson,

Joowon Klusowski, Boris Shigida, Jantje Sönksen, Jennifer Sun, Rocio Titiunik, and Kevin Zhang

18



for comments. Cattaneo gratefully acknowledges financial support from the National Science Foun-

dation through SES-1947805, SES-2019432, and SES-2241575. Klusowski gratefully acknowledges

financial support from the National Science Foundation through CAREER DMS-2239448.

References

Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal effects. Proceedings

of the National Academy of Sciences, 113(27):7353–7360, 2016.

Moulinath Banerjee and Ian W. McKeague. Confidence sets for split points in decision trees. Annals

of Statistics, 35(2):543 – 574, 2007.

Merle Behr, Yu Wang, Xiao Li, and Bin Yu. Provable boolean interaction recovery from tree

ensemble obtained via random forests. Proceedings of the National Academy of Sciences, 119

(22):e2118636119, 2022.

Richard A Berk. Statistical learning from a regression perspective. Springer Series in Statistics.

Springer Nature, 2020.

Leo Breiman, Jerome Friedman, RA Olshen, and Charles J Stone. Classification and Regression

Trees. Chapman and Hall/CRC, 1984.
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Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition,

volume 31. Springer Science & Business Media, 2013.

F. Eicker. The asymptotic distribution of the suprema of the standardized empirical processes.

Annals of Statistics, 7(1):116 – 138, 1979.

Ran El-Yaniv and Dmitry Pechyony. Transductive rademacher complexity and its applications.

Journal of Artificial Intelligence Research, 35:193–234, 2009.
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SA-1 Overview

This supplement presents proofs for the results in the main paper, and several additional theoretical results.

We start with a homoskedastic constant regression model in Section SA-2, showing that the standard CART

decision tree estimator of the (constant) conditional mean suffers from slow uniform convergence rates.

In Section SA-3, we then study the more challenging heterogeneous causal effect estimators discussed in

the main paper: inverse probability weighting (IPW) estimator, the difference in mean (DIM) estimator,

and the sum-of-square-minimization (SSE) estimator are considered in Sections SA-3.1, SA-3.2 and SA-3.3,

respectively. Section SA-1.2 links the results in this supplemental appendix to those presented in the main

paper.

SA-1.1 Notations

Sets. R is the set of real numbers and N the positive integers. For n ∈ N we write [n] = {1, . . . , n}.

Vectors and matrices. Boldface lower-case letters (e.g. x) denote column vectors, and boldface upper-case

letters (e.g. A) denote matrices. For a vector x, its i-th component is xi; for a matrix A, its (i, j)-th entry

is Aij . Denote by ej the j-th unit vector.

Norms. For x ∈ R
d, define ∥x∥ = (

∑d
i=1 x

2
i )1/2, and ∥x∥∞ = maxi≤d |xi|. For a matrix A ∈ R

m×n,

the operator norm is ∥A∥ = sup∥x∥=1∥Ax∥, and the max norm is ∥A∥max = max1≤i≤m,1≤j≤n |Aij |. For a

bounded measurable function g, ∥g∥∞ = supx |g(x)|. For a random variable X with distribution PX , denote

the population L2 norm by ∥X∥ = (
∫
∥x∥2dPX(x))1/2; and given a random sample D = {X1, · · · , Xn},

denote the empirical L2 norm by ∥X∥D = (n−1
∑n

i=1∥Xi∥2)1/2.

Asymptotics. For reals sequences an ≪ bn (or an = o(bn)) if lim supn→∞
|an|
|bn| = 0; |an| ≲ |bn| (or an =

O(bn)) if there exists some constant C and N > 0 such that n > N implies |an| ≤ C|bn|. For sequences of

random variables an = oP(bn) if plimn→∞
|an|
|bn| = 0, |an| ≲P |bn| if lim supM→∞ lim supn→∞ P[|an

bn
| ≥ M ] = 0.

Other. 1(·) denotes the indicator function. For two random variables X and Y , X ⊥⊥ Y means X and Y

are independent. For x ∈ R, ⌊x⌋ and ⌈x⌉ denote the floor and ceiling of x respectively. N(µ,Σ) denotes the

Gaussian distribution with mean µ and covariance matrix Σ. Beta(α, β) denotes the Beta distribution with

parameter (α, β). A stochastic process {B(t), 0 ≤ t ≤ 1} is a Brownian bridge, if B is a continuous Gaussian

process with E[B(t)] = 0, and E[B(t)B(s)] = min{t, s} − ts.

SA-1.2 Proof of Main Paper Results

• Proof of Theorem 1: The conclusions follow from Corollary SA-11, Corollary SA-13, Theorem SA-21,

Theorem SA-23, Corollary SA-31, and Corollary SA-33.

• Proof of Theorem 2: The conclusions follow from Corollary SA-12, Corollary SA-14, Theorem SA-22,

Theorem SA-24, Corollary SA-32, and Corollary SA-34.

• Proof of Theorem 3: The conclusions follow from Corollary SA-15, Corollary SA-16, Theorem SA-25,

Theorem SA-26, Corollary SA-35, and Corollary SA-36.
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SA-2 Constant Regression Model

This section is self-contained, and substantially improves on the results reported in Cattaneo et al. [2022].

The results presented herein are of independent interest in regression estimation settings, and they also offer

a gentle introduction to the more technically involved results discussed in Section SA-3.

Consider the canonical regression model where the observed data {(yi,x
T
i ) : i = 1, 2, . . . n} is a random

sample satisfying

yi = µ(xi) + εi, E[εi | xi] = 0, E
[
ε2i | xi

]
= σ2(xi), (SA-1)

with xi = (xi1, xi2, . . . , xip)T a vector of p covariates taking values on some support set X.

Assumption SA–1 (Location Regression Model). D = {(yi,x
T
i ) : 1 ≤ i ≤ n} is a random sample such

that the following conditions hold for all i = 1, 2, · · · , n, satisfying Equation (SA-1) and the following:

1. yi = µ(xi) + εi, with E[εi|xi] = 0 and xi ⊥⊥ εi.

2. µ(x) = c for all x ∈ X ⊆ R
p, where c is some constant.

3. xi,1, . . . , xi,p are independent and continuously distributed.

4. There exists α > 0 such that E[exp(λεi)] < ∞ for all |λ| < 1/α and σ2 = E[ε2i ] > 0.

In what follows, we denote by PX the marginal distribution of xi.

Now we illustrate the CART estimation strategy. Given any tree T, the CART estimator is given as

follows:

Definition SA-1 (CART Estimate). Suppose T is the tree used, and Dµ = {(yi,x
⊤
i ) : i = 1, 2, . . . , nµ},

with nµ ≤ n, is the dataset used. Let t be the unique terminal node in T containing x ∈ X. The CART

estimator is

µ̂(x;T,Dµ) =
1

n(t)

∑

i:xi∈t

yi,

where n(t) =
∑nµ

i=1 1(xi ∈ t) is the “local” sample sizes. In case n(t) = 0, take µ̂(x;T,Dµ) = 0.

Definition SA-2 (Tree Construction). Given a dataset DT = {(yi,x
⊤
i ) : i = 1, 2, . . . , nT}, with nT ≤ n, a

parent node t in the tree (i.e., a region in X) is divided into two child nodes, tL and tR, by minimizing the

sum-of-squares error (SSE),

min
1≤j≤p

min
βL,βR,ς∈R

∑

xi∈t

(
yi − βL1(xij ≤ ς) − βR1(xij > ς)

)2
, (SA-2)

where (βL, βR, ς, j) denote the two child nodes outputs, split point, and split direction, respectively. With at

least one split, the final CART tree is denoted by T(DT).

Definition SA-3 (Sample Splitting). Recall Definition SA-1 and Definition SA-2, and that D = {(yi,x
⊤
i ) :

i = 1, 2, . . . , n} is the available random sample.

• No Sample Splitting (NSS): The dataset D is used for both the tree construction and the treatment

effect estimation, that is, DT = D and Dµ = D. The CART tree estimator is

µ̂NSS(x) = µ̂(x;T(D),D).
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• Honesty (HON): The dataset D is divided in two independent datasets DT and Dµ with sample sizes

nT and nµ, respectively, and satisfying n ≲ nT, nµ ≲ n. The CART tree estimator is

µ̂HON(x) = µ̂(x;T(DT),Dµ).

Definition SA-4 (X-Adaptive Estimation). Recall Definition SA-1 and Definition SA-2, and that D =

{(yi,x
⊤
i ) : i = 1, 2, . . . , n} is the available random sample.

1. The dataset D is divided into K+1 datasets (DT1 , . . . ,DTK
,Dµ), with sample sizes (nT1 , . . . , nTK

, nµ),

respectively, and satisfying nT1 = · · · = nTK
= nµ (possibly after dropping n mod K data points at

random). For each of the datasets DTj = {(yi,x
⊤
i ) : i = 1, . . . , nTj}, j = 1, . . . ,K, replace {yi : i =

1, . . . , nTj} with independent copies {ỹi : i = 1, . . . , nTj}, while keeping the same {xi : i = 1, . . . , nTj}.

2. The maximal decision tree of depth K, TK(DT1 , · · · ,DTK
), is obtained by iterating K times the l ∈

{DIM, IPW, SSE} splitting procedures in Definition SA-2, each time splitting all terminal nodes until (i)

the node contains a single data point (yi,x
⊤
i ), or (ii) the input values xi and/or all yi within the node

are the same.

3. The X-adaptive estimator is

µ̂X(x;K) = µ̂(x;TK(DT1
, . . . ,DTK

),Dµ).

SA-2.1 No Sample Splitting

We start from the no sample splitting (NSS) case, and characterize the location of the first split.

Decision Stumps.

For each variable j = 1, 2, . . . , p, let πj be the permutation such that xπj(i),j is non-decreasing in the index

i = 1, 2, . . . , n. Then, minimizing Equation (SA-2) can be equivalently recasted as maximizing the so-called

impurity gain:
∑

xi∈t

(
yi − yt

)2 −
∑

xi∈t

(
yi − ytL1(xi ∈ tL) − ytR1(xi ∈ tR)

)2

=

(
1√
n(t)

∑

xi∈tL
(yi − µ) − n(tL)

n(t)
1√
n(t)

∑

xi∈t(yi − µ)
)2

(n(tL)/n(t))(1 − n(tL)/n(t))
,

(SA-3)

where ȳt = n(t)−1
∑

xi∈t yi1(xi ∈ t). We can show this is also equivalent to maximizing the conditional

variance given the split :

n(tL)n(tR)

n(t)

(
ytL − ytR

)2
. (SA-4)

We start by considering the case when the tree is depth one (K = 1), i.e., a decision stump. Then

optimization objectives are equivalent to choosing a splitting coordinate ȷ̂, and a splitting index ı̂ such that

tL = {u ∈ X : uȷ̂ ≤ xπȷ(ı),ȷ}, tR = {u ∈ X : uȷ̂ > xπȷ(ı),ȷ}.

6



The tree output can then be written as

µ̂NSS(x) =







ȳtL , x ∈ tL

ȳtR , x ∈ tR
, (SA-5)

where xȷ̂ denotes the value of the ȷ̂-th component of x.

The following theorem formally (and very precisely) characterizes the regions of the support X where

the first CART split index ı̂, at the root node, has non-vanishing probability of realizing. As a consequence,

the theorem also characterizes the effective sample size of the resulting cells (recall the data is ordered so

that µ̂ = xı̂ȷ̂ and hence ı̂ = #{xi : xiȷ̂ ≤ µ̂}).

Theorem SA-1 (Imbalanced Splits). Suppose Assumption SA–1 holds, and let (̂ı, ȷ̂) be the CART split

index and split direction at the root node. For each a, b ∈ (0, 1) with a < b, and ℓ ∈ [p], we have

lim inf
n→∞

P
(
na ≤ ı̂ ≤ nb, ȷ̂ = ℓ

)
= lim inf

n→∞
P
(
n− nb ≤ ı̂ ≤ n− na, ȷ̂ = ℓ

)
≥ b− a

2pe
, (SA-6)

which implies

lim inf
n→∞

P
(
na ≤ ı̂ ≤ nb

)
= lim inf

n→∞
P
(
n− nb ≤ ı̂ ≤ n− na

)
≥ b− a

2e
.

As part of the technical proofs, we correct a statement in the limiting distribution of the maximum of

an O-U process in Eicker [1979, Theorem 5] – the 2 log(c) term appearing in the limiting probability should

be log(c). A corrected version for a more general case (the maximum of the norm of possibly multivariate

O-U process) is given in the following remark:

Remark SA-1 (A Markovian type result of Darling-Erdos Theorem for Vectors). Let {V1(t) : 0 ≤ t < ∞}
, · · · , {Vd(t) : 0 ≤ t < ∞} be independent identically distributed Ornstein-Uhlenbeck processes with E[Vi(t)] =

0 and E[Vi(t)Vi(s)] = exp(−|t− s|/2), 1 ≤ i ≤ d. Define

N(t) =

(
∑

1≤i≤d

V 2
i (t)

)1/2

.

For any c > 0, z ∈ R,

lim
n→∞

P

(

a(log(n)) sup
0≤t≤c log(n)

N(log(n)) − bd(log(n)) ≤ z
)

= exp
(

− e−(z−log(c))
)

,

where a(t) = (2 log(t))1/2 and bd(t) = 2 log(t) + d
2 log log(t) − log Γ(d/2).

Theorem SA-2 (Convergence Rates for Decision Stumps). Suppose Assumption SA–1 holds. Suppose the

CART tree has depth K = 1. Then for any a, b ∈ (0, 1) with a < b, we have

lim inf
n→∞

P

(

sup
x∈X

|µ̂NSS(x) − µ| ≥ σn−b/2
√

(2 + o(1)) log log(n)

)

≥ b

e
, (SA-7)

and suppose w.l.o.g. that xi ∼ Uniform([0, 1]p), then

lim inf
n→∞

inf
x∈Xn

P

(

|µ̂NSS(x) − µ| ≥ σn−b/2
√

(2 + o(1)) log log(n)
)

≥ b− a

2e
, (SA-8)
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where Xn = {x ∈ [0, 1]p : xj = o(1)na−1 or 1 − xj = o(1)na−1 for some j ∈ [p]}.

Deep Trees.

We will show that the imbalanced split issue is inherited from the decision stumps to trees of arbitrary depth.

Theorem SA-3 (Convergence Rates for Deep Trees). Suppose Assumption SA–1 holds. Then for any

b ∈ (0, 1), we have

lim inf
n→∞

P

(

sup
x∈X

|µ̂NSS(x) − µ| ≥ σn−b/2
√

(2 + o(1)) log log(n)

)

≥ b/e.

Therefore, decision trees grown with CART methodology cannot converge faster than any polynomial-

in-n, when uniformity over the full support of the data X, and over possible data generating processes, is of

interest.

However, for the L2-risk we still have the following positive result. This is because the small cells that

leads to issues in uniform consistency will have a small measure by PX .

Theorem SA-4 (L2 Consistency – NSS). Suppose Assumption SA–1 holds. Then for the depth K (possibly

non-maximal) tree,

E

[ ∫

X

(µ̂NSS(x) − µ)2dFX(x)

]

≤ C
2K log(n)4 log(np)

n
,

where C is a positive constant that only depends on σ2. Moreover,

lim sup
n→∞

P

(∫

X

(µ̂NSS(x) − µ)2dFX(x) ≥ C ′ 2
K log(n)4 log(np)

n

)

= 0,

where C ′ is a positive constant that only depends on the distribution of εi.

SA-2.2 Honest Sample Splitting

For honest sample splitting strategy, we also present a lower bound on uniform consistency and an upper

bound on L2 consistency.

Theorem SA-5. Suppose Assumption SA–1 holds. Then for any b ∈ (0, 1), we have

lim inf
n→∞

P

(

sup
x∈X

|µ̂HON(x) − µ| ≥ CE[|yi − µ|]
nb/2

)

≥ C
E[|yi − µ|2]

V[yi]
b,

where C is some constant only depending on lim infn→∞
nT

nµ
and lim supn→∞

nT

nµ
.

Theorem SA-6 (L2 Consistency – HON). Suppose Assumption SA–1 holds. Then for the depth K (possibly

non-maximal) causal tree,

E

[ ∫

X

(µ̂HON(x) − µ)2dFX(x)

]

≤ C
2K log(n)5

n
,

provided ρ−1 ≤ nT

nµ
≤ ρ for some ρ ∈ (0, 1), and C is a positive constant that only depends on σ2 and ρ.
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Moreover,

lim sup
n→∞

P

(∫

X

(µ̂HON(x) − µ)2dFX(x) ≥ C ′ 2
K log(n)5

n

)

= 0,

where C ′ is some constant only depending on ρ and the distribution of εi.

Compared to Theorem SA-3, the lower bound on the LHS of Theorem SA-5 that we characterize has one

less
√

(2 + o(1)) log log(n). Compared to Theorem SA-4, the upper bound on the RHS of Theorem SA-6 has

log(np) replaced by log(n). These changes are due to the honest sample splitting strategy.

SA-2.3 X-adaptive Tree

For X-adaptive trees, we leverage the decision stump result from Theorem SA-1 using an iterative argument

to infer inconsistency of trees of depth Kn ≳ log log(n).

Theorem SA-7 (Pointwise Inconsistency). Suppose Assumption SA–1 holds. If lim infn→∞
Kn

log log(n) > 0,

then there exists a positive constant C not depending on n such that

lim inf
n→∞

P

(

sup
x∈X

|µ̂X(x;Kn) − µ| > C

)

> 0.

Since we keep the xi’s and refresh the (di, yi)’s, the tree estimator has a simple form condition on xi’s.

Hence a direct variance calculation gives us the following L2-consistency result.

Theorem SA-8 (L2 Consistency – X). Suppose Assumption SA–1 holds. Then

E

[ ∫

X

(µ̂X(x;K) − µ)2dFX(x)

]

≤ 2K+1(K + 1)σ2

n + 1
.

Using the same argument as Theorem SA-6, we can show

E

[ ∫

X

(µ̂X(x;K) − µ)2dFX(x)

]

≤ C
K2K log(n)5

n
,

where C is a positive constant that only depends on σ2. The direct variance calculation allows us to remove

extra poly-log terms.

SA-3 Heterogeneous Causal Effect Estimation

In this section, we consider the heterogeneous causal effect estimation problem from the main paper. The

assumptions on the data generating process and the definitions of causal trees are the same as in the main

paper. For completeness, we include them here:

Assumption SA–2 (Data Generating Process). D = {(yi, di,x
⊤
i ) : 1 ≤ i ≤ n} is a random sample, where

yi = diyi(1) + (1 − di)yi(0), xi = (xi,1, . . . , xi,p)⊤, and the following conditions hold for all d = 0, 1 and

i = 1, 2, . . . , n.

1. (yi(0), yi(1),xi) ⊥⊥ di, and ξ = P[di = 1] ∈ (0, 1).

2. yi(d) = µd(xi) + εi(d), with E[εi(d)|xi] = 0 and xi ⊥⊥ εi(d).

3. µd(x) = cd for all x ∈ X, where cd is some constant, and X is the support of xi.
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4. xi,1, . . . , xi,p are independent and continuously distributed.

5. There exists α > 0 such that E[exp(λεi(d))] < ∞ for all |λ| < 1/α and E[ε2i (d)] > 0.

And the causal trees are constructed based on the following rules:

Definition SA-5 (CATE Estimators). Suppose T is the tree used, and Dτ = {(yi, di,x
⊤
i ) : i = 1, 2, . . . , nτ},

with nτ ≤ n, is the dataset used. Let t be the unique terminal node in T containing x ∈ X.

• The Difference-in-Means (DIM) estimator is

τ̂DIM(x;T,Dτ ) =
1

n1(t)

∑

i:xi∈t

diyi −
1

n0(t)

∑

i:xi∈t

(1 − di)yi,

where nd(t) =
∑nτ

i=1 1(xi ∈ t, di = d), for d = 0, 1, are the “local” sample sizes. In case n0(t) = 0 or

n1(t) = 0, take τ̂DIM(x;T,Dτ ) = 0.

• The Inverse Probability Weighting (IPW) estimator is

τ̂IPW(x;T,Dτ ) =
1

n(t)

∑

i:xi∈t

di − ξ

ξ(1 − ξ)
yi,

where n(t) = n0(t) + n1(t) =
∑nτ

i=1 1(xi ∈ t) is the “local” sample size. In case n(t) = 0, take

τ̂IPW(x;T,Dτ ) = 0.

Definition SA-6 (Tree Construction). Suppose DT = {(yi, di,x
⊤
i ) : i = 1, 2, . . . , nT}, with nT ≤ n, is the

dataset used to construct the tree T.

• Variance Maximization: A parent node t (i.e., a terminal node partitioning X) in a previous tree T′

is divided into two child nodes, tL and tR, forming the new tree T, by maximizing

n(tL)n(tR)

n(t)

(

τ̂l(tL;T,DT) − τ̂l(tR;T,DT)
)2

, l ∈ {DIM, IPW}. (SA-9)

With at least one split, the two final causal trees are denoted by TDIM(DT) and TIPW(DT), respectively,

for l ∈ {DIM, IPW}.

• SSE Minimization: A parent node t (i.e., a terminal node partitioning X) in the previous tree T′ is

divided into two child nodes, tL and tR, forming the next tree T, by solving

min
aL,bL,aR,bR∈R

∑

xi∈tL

(yi − aL − bLdi)
2 +

∑

xi∈tR

(yi − aR − bRdi)
2, (SA-10)

where only the data DT is used. With at least one split, the final causal tree is denoted by TSSE(DT).

Definition SA-7 (Sample Splitting and Estimators). Recall Definition SA-5 and Definition SA-6, and that

D = {(yi,x
⊤
i , di) : i = 1, 2, . . . , n} is the available random sample.

• No Sample Splitting (NSS): The dataset D is used for both the tree construction and the treatment
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effect estimation, that is, DT = D and Dτ = D. The causal tree estimators are

τ̂ NSS
DIM

(x) = τ̂DIM(x;TDIM(D),D),

τ̂ NSS
IPW

(x) = τ̂IPW(x;TIPW(D),D), and

τ̂ NSS
SSE

(x) = τ̂DIM(x;TSSE(D),D),

• Honesty (HON): The dataset D is divided in two independent datasets DT and Dτ with sample sizes

nT and nτ , respectively, and satisfying n ≲ nT, nτ ≲ n. The causal tree estimators are

τ̂ HON
DIM

(x) = τ̂DIM(x;TDIM(DT),Dτ ),

τ̂ HON
IPW

(x) = τ̂IPW(x;TIPW(DT),Dτ ), and

τ̂ HON
SSE

(x) = τ̂DIM(x;TSSE(DT),Dτ ).

While the estimators τ̂ NSSl (x) and τ̂ HONl (x), l ∈ {DIM, IPW, SSE} depend on the depth of the tree construction

used, our the notation does not make this dependence explicit because our results only require (at least) one

single split.

X-Adaptive Trees.

Definition SA-8 (X-Adaptive Estimation). Recall Definition SA-5 and Definition SA-6, and that D =

{(yi,x
⊤
i , di) : i = 1, 2, . . . , n} is the available random sample.

1. The dataset D is divided into K+1 datasets (DT1
, . . . ,DTK

,Dτ ), with sample sizes (nT1
, . . . , nTK

, nτ ),

respectively, and satisfying nT1
= · · · = nTK

= nτ (possibly after dropping n mod K data points

at random). For each of the datasets Dj = {(yi, di,x
⊤
i ) : i = 1, . . . , nTj

}, j = 1, . . . ,K, replace

{(yi, di) : i = 1, . . . , nTj
} with independent copies {(ỹi, d̃i) : i = 1, . . . , nTj

}, while keeping the same

{xi : i = 1, . . . , nTj
}.

2. The maximal decision tree of depth K, Tl
K(DT1

, · · · ,DTK
), is obtained by iterating K times the l ∈

{DIM, IPW, SSE} splitting procedures in Definition SA-6, each time splitting all terminal nodes until (i)

the node contains a single data point (yi, di,x
⊤
i ), or (ii) the input values xi and/or all (di, yi) within

the node are the same.

3. The X-adaptive estimators are

τ̂ X
DIM

(x;K) = τ̂DIM(x;TDIM

K (DT1 , . . . ,DTK
),Dτ ),

τ̂ X
IPW

(x;K) = τ̂IPW(x;TIPW

K (DT1
, . . . ,DTK

),Dτ ), and

τ̂ X
SSE

(x;K) = τ̂DIM(x;TSSE

K (DT1
, . . . ,DTK

),Dτ ).

SA-3.1 IPW Estimator

The transformed outcomes yi
di−ξ
ξ(1−ξ) , 1 ≤ i ≤ n, are i.i.d, with

E

[

yi
di − ξ

ξ(1 − ξ)

∣
∣
∣
∣
xi

]

= E[yi(1) − yi(0)|xi] = c1 − c0,
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and

ε̃i = yi
di − ξ

ξ(1 − ξ)
− (c1 − c0) = (c1 + εi(1))

di
ξ

− (c0 + εi(0))
1 − di
1 − ξ

− (c1 − c0) ⊥⊥ xi.

Assumption SA–2 implies E[exp(λε̃i)] < ∞ for all |λ| ≤ 1/β with β only depending on ξ and α, and E[ε̃2i ] > 0.

Hence the following results are immediate corollaries from the results in Section SA-2.

SA-3.1.1 No Sample Splitting

Corollary SA-9 (Imbalanced Split). Suppose Assumption SA–2 holds. Then for each a, b ∈ (0, 1) with

a < b, for every ℓ ∈ [p],

lim inf
n→∞

P
(
na ≤ ı̂ ≤ nb, ȷ̂ = ℓ

)
= lim inf

n→∞
P
(
n− nb ≤ ı̂ ≤ n− na, ȷ̂ = ℓ

)
≥ b− a

2pe
.

Corollary SA-10 (Stump). Suppose Assumption SA–2 holds, and the tree has depth K = 1. Then for any

a, b ∈ (0, 1) with a < b, we have

lim inf
n→∞

P

(

sup
x∈X

|τ̂ NSS
DIM

(x) − τ | ≥ σn−b/2
√

(2 + o(1)) log log(n)

)

≥ b

e
,

where σ2 = V

[
diyi(1)

ξ + (1−di)yi(0)
1−ξ

]

. Moreover, if xi has a density that is continuous and positive on [0, 1]p,

then

lim inf
n→∞

inf
x∈Xn

P

(

|τ̂ NSS
DIM

(x) − τ | ≥ σn−b/2
√

(2 + o(1)) log log(n)
)

≥ b− a

2e
,

where Xn = {x ∈ [0, 1]p : xj = o(1)na−1 or 1 − xj = o(1)na−1 for some j ∈ [p]}.
Corollary SA-11 (Rates). Suppose Assumption SA–2 holds. Then for any b ∈ (0, 1) and arbitrary depth

tree, we have

lim inf
n→∞

P

(

sup
x∈X

|τ̂ NSS
DIM

(x) − τ | ≥ σn−b/2
√

(2 + o(1)) log log(n)

)

≥ b

e
.

Corollary SA-12 (L2 Consistency – NSS). Suppose Assumption SA–2 holds. Then for the depth K (possibly

non-maximal) causal tree,

E

[ ∫

X

(τ̂ NSS
DIM

(x) − τ)2dFX(x)

]

≤ C
2K log(n)4 log(np)

n
,

where C is a positive constant that only depends on the distribution of ε̃i = yi
di−ξ
ξ(1−ξ) − τ . Moreover,

lim sup
n→∞

P

(∫

X

(τ̂ NSS
DIM

(x) − τ)2dFX(x) ≥ C ′ 2
K log(n)4 log(np)

n

)

= 0,

where C ′ is a positive constant that only depends on the distribution of ε̃i.
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SA-3.1.2 Honest Sample Splitting

Corollary SA-13 (Honest Causal Output). Suppose Assumption SA–2 holds. Then for any b ∈ (0, 1), we

have

lim inf
n→∞

P

(

sup
x∈X

|τ̂ HON
IPW

(x) − τ | ≥ CE[|ε̃i|]
8nb/2

)

≥ C
E[|ε̃i|2]

V[ε̃i]
b,

where C is some constant only depending on the distribution of ε̃i = yi
di−ξ
ξ(1−ξ) − τ , lim infn→∞

nT

nτ
and

lim supn→∞
nT

nτ
.

Corollary SA-14 (L2 Consistency – HON). Suppose Assumption SA–2 holds. Then for the depth K

(possibly non-maximal) causal tree,

E

[ ∫

X

(τ̂ HON
IPW

(x) − τ)2dFX(x)

]

≤ C
2K log(n)5

n
,

provided ρ−1 ≤ nT

nτ
≤ ρ for some ρ ∈ (0, 1), and C is some constant only depending on the distribution of

ε̃i = yi
di−ξ
ξ(1−ξ) − τ and ρ. Moreover,

lim sup
n→∞

P

(∫

X

(τ̂ HON
IPW

(x) − τ)2dFX(x) ≥ C ′ 2
K log(n)5

n

)

= 0,

where C ′ is some constant only depending on the distribution of ε̃i and ρ.

SA-3.1.3 X-adaptive Tree

Corollary SA-15 (Honest CART+). Suppose Assumption SA–2 holds. Suppose lim infn→∞
Kn

log log(n) > 0.

Then, there exists a positive constant C not depending on n such that

lim inf
n→∞

P

(

sup
x∈X

|τ̂ X
IPW

(x;Kn) − τ | > C

)

> 0.

Corollary SA-16 (L2 Consistency – X). Suppose Assumption SA–2 holds. Then

E

[ ∫

X

(τ̂ X
IPW

(x;K) − τ)2dFX(x)

]

≤ C
2KKσ2

n
,

where C is some constant only depending on the distribution of ε̃i = yi
di−ξ
ξ(1−ξ) − τ .

SA-3.2 DIM Estimator

The DIM estimator can not be directly written as a regression tree with transformed outcome. However, we

show that it can be approximated by an IPW-tree. More specifically, we view the split criterion with different

splitting index and coordinate as an empirical process, and show that the split criterion for DIM and IPW

approximate each other.
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SA-3.2.1 No Sample Splitting

Approximation Results on Decision Stumps.

Denote by πℓ permutation of index [n] such that xπℓ(1),ℓ ≤ xπℓ(2),ℓ ≤ · · · ≤ xπℓ(n),ℓ, 1 ≤ ℓ ≤ p. Consider the

split criterion for the regression and ipw trees when splitting at the root note when #{xπℓ(i) ∈ tL} = k: For

1 ≤ ℓ ≤ p, 1 ≤ k ≤ n, consider

I
DIM(k, ℓ) =

k(n− k)

n

(

τ̂ DIML (k, ℓ) − τ̂ DIMR (k, ℓ)
)2

,

Ī
IPW(k, ℓ) =

k(n− k)

n

(

τ̄ IPWL (k, ℓ) − τ̄ IPWR (k, ℓ)
)2

,

where

τ̂ DIML (k, ℓ) =

∑k
i=1 dπℓ(i)yπℓ(i)
∑k

i=1 dπℓ(i)

−
∑k

i=1(1 − dπℓ(i))yπℓ(i)
∑k

i=1(1 − dπℓ(i))
,

τ̂ DIMR (k, ℓ) =

∑n
i=k+1 dπℓ(i)yπℓ(i)
∑n

i=k+1 dπℓ(i)
−
∑n

i=k+1(1 − dπℓ(i))yπℓ(i)
∑n

i=k+1(1 − dπℓ(i))
,

τ̄ IPWL (k, ℓ) =
1

k

k∑

i=1

dπℓ(i)

ξ
επℓ(i)(1) − 1

k

k∑

i=1

1 − dπℓ(i)

1 − ξ
επℓ(i)(0),

τ̄ IPWR (k, ℓ) =
1

n− k

n∑

i=k+1

dπℓ(i)

ξ
επℓ(i)(1) − 1

n− k

n∑

i=k+1

1 − dπℓ(i)

1 − ξ
επℓ(i)(0).

Notice that if we replace επℓ(i) by yπℓ(i), we would get τ̂ IPWL (or τ̂ IPWR ) instead of τ̄ IPWL (or τ̄ IPWR ). But putting

επℓ(i) here allows us to approximate the I DIM(·, ℓ) processes.

The optimization objective based on Definition SA-6 for the regression based estimator with variance

maximization is equivalent to choosing a splitting coordinate ȷ̂DIM, and a splitting index ı̂DIM such that

tL = {u ∈ X : uȷ̂DIM
≤ xπȷ̂DIM

(ı̂DIM),ȷ̂DIM
}, tR = {u ∈ X : uȷ̂DIM

> xπȷ̂DIM
(ı̂DIM),ȷ̂DIM

},

that maximizes

n(tL)n(tR)

n(t)

(

τ̂DIM(tL) − τ̂DIM(tR)
)2

,

that is,

(̂ıDIM, ȷ̂DIM) = arg max
k,ℓ

I
DIM(k, ℓ).

A technical aspect is to control for fluctuations of objects of the form
∑k

i=1 dπℓ(i)
yπℓ(i)∑k

i=1 dπℓ(i)
, for which we will use

a truncation argument that requires
∑k

i=1 dπℓ(i) ≥ rn with rn → ∞. This gives the following lemma:

Lemma SA-17 (Approximation Error). Suppose Assumption SA–2 holds. Let (rn)n∈N be a sequence of real

numbers such that rn → ∞. Then

max
1≤ℓ≤p

max
rn≤k<n−rn

∣
∣
∣I

DIM(k, ℓ) − Ī
IPW(k, ℓ)

∣
∣
∣ = OP

(
log log(n)√

rn

)

.
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We also control for the truncation error:

Lemma SA-18 (Truncation Error). Suppose Assumption SA–2 holds. Let ρn be a sequence taking values

in (0, 1) such that lim supn→∞ ρn log log(n) = 0, and take sn = exp((log n)ρn). Then

max
1≤ℓ≤p

max
1≤k≤sn,n−sn≤k≤n

∣
∣
∣I

DIM(k, ℓ) − Ī
IPW(k, ℓ)

∣
∣
∣ = OP

(

ρn log log(n) +
sn

n− sn
log log(n)

)

.

Rates for Decision Stumps.

The previous two lemmas imply that we can study arg max of I DIM in terms of arg max of Ī IPW. The

latter is the split criterion based on CART with transformed outcome di

ξ εi(1) − 1−di

1−ξ εi(0), and results from

Section SA-2 can be applied.

Theorem SA-19 (Imbalanced Split). Suppose Assumption SA–2 holds. Then for each a, b ∈ (0, 1) with

a < b, for every ℓ ∈ [p],

lim inf
n→∞

P
(
na ≤ ı̂DIM ≤ nb, ȷ̂DIM = ℓ

)
= lim inf

n→∞
P
(
n− nb ≤ ı̂DIM ≤ n− na, ȷ̂DIM = ℓ

)
≥ b− a

2pe
.

The issue of imbalanced cells gives rise to the slow uniform convergence rate.

Theorem SA-20 (Rates for Stump). Suppose Assumption SA–2 holds, and the tree has depth K = 1. Then

for any a, b ∈ (0, 1) with a < b,

lim inf
n→∞

P

(

sup
x∈X

|τ̂ NSS
DIM

(x) − τ | ≥ σn−b/2
√

(2 + o(1)) log log(n)

)

≥ b

e
,

where σ2 = V[ε̃i], with ε̃i = di

ξ εi(1) − 1−di

1−ξ εi(0). Suppose w.l.o.g. that xi ∼ Uniform([0, 1]p), then

lim inf
n→∞

inf
x∈Xn

P

(

|τ̂ NSS
DIM

(x) − τ | ≥ σn−b/2
√

(2 + o(1)) log log(n)
)

≥ b− a

2e
,

where Xn = {x ∈ [0, 1]p : xj = o(1)na−1 or 1 − xj = o(1)na−1 for some j ∈ [p]}.

Deeper Trees.

We generalize the above results on decision stumps to trees of arbitrary depths.

Theorem SA-21 (Deeper Trees). Suppose Assumption SA–2 holds. Then for any b ∈ (0, 1),

lim inf
n→∞

P

(

sup
x∈X

|τ̂ NSS
DIM

(x) − τ | ≥ σn−b/2
√

(2 + o(1)) log log(n)

)

≥ b/e.

In comparison to the uniform convergence rate, for L2 convergence rate we can give an upper bound as

follows.

Theorem SA-22 (L2 Consistency – NSS). Suppose Assumption SA–2 holds. Then for the depth K (possibly

non-maximal) causal tree,

E

[ ∫

X

(τ̂ NSS
DIM

(x) − τ)2dFX(x)

]

≤ C
2K log(n)4 log(np)

n
,
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where C is a positive constant that only depends on the distribution of (di, εi(0), εi(1)). Moreover,

lim sup
n→∞

P

(∫

X

(τ̂ NSS
DIM

(x) − τ)2dFX(x) ≥ C ′ 2
K log(n)4 log(np)

n

)

= 0,

where C ′ is a positive constant that only depends on the distribution of (di, εi(0), εi(1)).

SA-3.2.2 Honest Sample Splitting

With the honest sample splitting strategy, we also give a lower bound on uniform convergence rate and an

upper bound on L2 convergence rate. The difference in rates from the rates in the previous section is due to

the different sample splitting strategies.

Theorem SA-23 (Honest Causal Output). Suppose Assumption SA–2 holds. Then for any b ∈ (0, 1),

lim inf
n→∞

P

(

sup
x∈X

|τ̂ HON
DIM

(x) − τ | ≥ Cn−b/2

)

≥ Cξ(1 − ξ)b.

where C is some positive constant only depending on the distribution of (εi(0), εi(1), di), lim infn→∞
nT

nτ
and

lim supn→∞
nT

nτ
.

Theorem SA-24 (L2 Consistency – HON). Suppose Assumption SA–2 holds. Then for the depth K (possibly

non-maximal) causal tree,

E

[ ∫

X

(τ̂ HON
DIM

(x) − τ)2dFX(x)

]

≤ C
2K log(n)5

n
,

provided ρ−1 ≤ nT

nτ
≤ ρ for some ρ ∈ (0, 1), and C is a positive constant that only depends on ρ and the

distribution of (εi(0), εi(1), di). Moreover,

lim sup
n→∞

P

(∫

X

(τ̂ HON
DIM

(x) − τ)2dFX(x) ≥ C ′ 2
K log(n)5

n

)

= 0,

where C ′ is a positive constant that only depends on ρ and the distribution of (εi(0), εi(1), di).

SA-3.2.3 X-adaptive Tree

We leverage Theorem SA-19 with an iterative argument to get

Theorem SA-25 (CART+). Suppose Assumption SA–2 holds. Suppose lim infn→∞
Kn

log log(Kn)
> 0. Then

lim inf
n→∞

P

(

sup
x∈X

|τ̂X
DIM

(x;Kn) − τ | > C

)

> 0,

where C is some positive constant not depending on n.

A direct variance calculation gives

Theorem SA-26 (L2 Consistency). Suppose Assumption SA–2 holds. Then

E

[ ∫

X

(τ̂X
DIM

(x;K) − τ)2dFX(x)

]

≤ C
K 2K

n
,

where C is some positive constant that only depends on the distribution of (εi(0), εi(1), di).
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Using the same argument as Theorem SA-24, we can show

E

[ ∫

X

(τ̂X
DIM

(x;K) − τ)2dFX(x)

]

≤ C
K2K log(n)5

n
,

where C is a positive constant that only depends on the distribution of (εi(0), εi(1), di). The direct variance

calculation allows us to remove extra poly-log terms.

SA-3.3 SSE Estimator

While the CATE estimators given the tree of the SSE strategy coincides with the DIM strategy, the tree

construction methods differ. Similar to DIM, for SSE we also characterize the distribution of split index via

a Gaussian approximation. Here we show the split criterion with SSE strategy can be approximated by the

split criterion from two transformed outcome regressions, one for treatment and one for control. A careful

high dimensional Gaussian approximation with respect to the geometry of simple convex sets then enables

us to characterize the limiting distribution of splitting indices.

SA-3.3.1 No Sample Splitting

Decision Stump.

For each variable j = 1, 2, . . . , p, the data {xij : xi ∈ t} is relabeled so that xij is increasing in the index

i = 1, 2, . . . , n(t), where n(t) = #{xi ∈ t}. The fit-based objective is to minimize

min
aL,bL,aR,bR∈R

∑

xi∈tL

(yi − atL − btLdi)
2 +

∑

xi∈tR

(yi − atR − btRdi)
2 (SA-11)

with respect to the index i and variable j. Again, the maximizers are denoted by (̂ıSSE, ȷ̂SSE), and the

optimal split point τ̂ that maximizes (SA-11) can be expressed as xı̂SSE,ȷ̂SSE .

To break down the criterion (SA-11), denote

µ̂L,0(k, ℓ) =

∑k
i=1(1 − dπℓ(i))yπℓ(i)
∑k

i=1(1 − dπℓ(i))
, µ̂L,1(k, ℓ) =

∑k
i=1 dπℓ(i)yπℓ(i)
∑k

i=1 dπℓ(i)

,

µ̂R,0(k, ℓ) =

∑n
i=k+1(1 − dπℓ(i))yπℓ(i)
∑n

i=k+1(1 − dπℓ(i))
, µ̂R,1(k, ℓ) =

∑n
i=k+1 dπℓ(i)yπℓ(i)
∑n

i=k+1 dπℓ(i)
.

Also to denote the counts compactly, n0 =
∑n

i=1(1− di), nL,0(k) =
∑k

i=1(1− dπℓ(i)), nR,0(k) =
∑n

i=k+1(1−
dπℓ(i)), and n1 =

∑n
i=1 di, nL,1(k) =

∑k
i=1 dπℓ(i), nR,1(k) =

∑n
i=k+1 dπℓ(i). Then we can show that maxi-

mizing Equation (SA-11) is equivalent to maximizing

I
SSE(k, ℓ) =

nL,0nR,0

n0
(µ̂L,0(k, ℓ) − µ̂R,0(k, ℓ))2 +

nL,1nR,1

n1
(µ̂L,1(k, ℓ) − µ̂R,1(k, ℓ))2.

We want to show the above empirical process can be approximated by

I
prox(k, ℓ) =(1 − ξ)

k(n− k)

n
(µ̄L,0(k, ℓ) − µ̄R,0(k, ℓ))2 + ξ

k(n− k)

n
(µ̄L,1(k, ℓ) − µ̄R,1(k, ℓ))2,

17



with

µ̄L,0(k, ℓ) =
1

k

∑

i≤k

1 − dπℓ(i)

1 − ξ
Yπℓ(i), µ̄L,1(k, ℓ) =

1

k

∑

i≤k

dπℓ(i)

ξ
Yπℓ(i),

µ̄R,0(k, ℓ) =
1

n− k

∑

i>k

1 − dπℓ(i)

1 − ξ
Yπℓ(i), µ̄R,1(k, ℓ) =

1

n− k

∑

i>k

dπℓ(i)

ξ
Yπℓ(i).

The latter can be approximated by the summation of two independent time-transformed O-U process (which

is again a time-transformed O-U process), for fixed coordinate ℓ ∈ [p]. More precisely, we present the

approximation lemmas:

Lemma SA-27 (Approximation Error). Suppose Assumption SA–2 holds. Let (rn)n∈N be a sequence of real

numbers such that rn → ∞. Then

max
1≤ℓ≤p

max
rn≤k<n−rn

∣
∣
∣I

SSE(k, ℓ) − I
prox(k, ℓ)

∣
∣
∣ = OP

(
log log(n)3/2√

rn

)

.

Lemma SA-28 (Truncation Error). Suppose Assumption SA–2 holds. Let ρn be a sequence taking values

in (0, 1) such that lim supn→∞ ρn log log(n) = ∞, and take sn = exp((log n)ρn). Then

max
1≤ℓ≤p

max
1≤k≤sn,n−sn≤k≤n

∣
∣
∣I

SSE(k, ℓ) − I
prox(k, ℓ)

∣
∣
∣ = OP

(

ρn log log(n) +
sn

n− sn
log log(n)

)

.

Theorem SA-29. Suppose Assumption SA–2 holds with V[εi(0)] = V[εi(1)]. Then for each a, b ∈ (0, 1)

with a < b, for every ℓ ∈ [p],

lim inf
n→∞

P
(
na ≤ ı̂SSE ≤ nb, ȷ̂SSE = ℓ

)
= lim inf

n→∞
P
(
n− nb ≤ ı̂SSE ≤ n− na, ȷ̂SSE = ℓ

)
≥ b− a

2pe
.

Remark SA-2. We add the condition that V[εi(0)] = V[εi(1)] so that a two-dimensional Darling-Erdos

theorem [Horváth, 1993, Lemma 2.1] can be applied. We conjecture that without V[εi(0)] = V[εi(1)], the

conclusion still holds with a Darling-Erdos theorem for i.n.i.d O-U process, but this is out of the scope of this

paper.

Notice that although the splitting criteria is different from the regression tree, once cells are given the

estimator given by the fit-based tree is exactly the same as the regression tree (see Section SA-3.2). Hence

the following results can be proved based on Theorem SA-29 and the same logic as Theorem SA-20 to

Theorem SA-25.

Corollary SA-30 (Rates for Stump). Suppose Assumption SA–2 holds with V[εi(0)] = V[εi(1)]. For any

a, b ∈ (0, 1) with a < b, we have

lim inf
n→∞

P

(

sup
x∈X

|τ̂ NSS
SSE

(x) − τ | ≥ σn−b/2
√

(2 + o(1)) log log(n)

)

≥ b

e
,

and suppose w.l.o.g. that xi ∼ Uniform([0, 1]p), then

lim inf
n→∞

inf
x∈Xn

P

(

|τ̂ NSS
SSE

(x) − τ | ≥ σn−b/2
√

(2 + o(1)) log log(n)
)

≥ b− a

2e
,

where Xn = {x ∈ [0, 1]p : xj = o(1)na−1 or 1 − xj = o(1)na−1 for some j ∈ [p]}, and σ2 = V[diyi(1)
ξ +
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(1−di)yi(0)
1−ξ ].

Deeper Trees.

Corollary SA-31 (Deeper Trees). Suppose Assumption SA–2 holds with V[εi(0)] = V[εi(1)]. Then for any

b ∈ (0, 1), for any sequence Kn taking values in N,

lim inf
n→∞

P

(

sup
x∈X

|τ̂ NSS
SSE

(x) − τ | ≥ σn−b/2
√

(2 + o(1)) log log(n)

)

≥ b/e.

Corollary SA-32 (L2 Consistency – NSS). Suppose Assumption SA–2 holds with V[εi(0)] = V[εi(1)]. Then

for the depth K (possibly non-maximal) causal tree,

E

[ ∫

X

(τ̂ NSS
SSE

(x) − τ)2dFX(x)

]

≤ C
2K log(n)4 log(np)

n
,

where C is a positive constant that only depends on the distribution of (εi(0), εi(1), di). Moreover,

lim sup
n→∞

P

(∫

X

(τ̂ NSS
SSE

(x) − τ)2dFX(x) ≥ C ′ 2
K log(n)4 log(np)

n

)

= 0,

where C ′ is a positive constant that only depends on the distribution of (εi(0), εi(1), di).

SA-3.3.2 Honest Sample Splitting

Corollary SA-33 (Honest Causal Output). Suppose Assumption SA–2 holds with V[εi(0)] = V[εi(1)]. Then

for any b ∈ (0, 1), for any sequence Kn taking values in N,

lim inf
n→∞

P

(

sup
x∈X

|τ̂ HON
SSE

(x) − τ | ≥ Cn−b/2

)

≥ Cξ(1 − ξ)b.

where C is some constant only depending on the distribution of (εi(0), εi(1), di), and lim infn→∞
nT

nτ
and

lim supn→∞
nT

nτ
.

Corollary SA-34 (L2 Consistency – HON). Suppose Assumption SA–2 holds with V[εi(0)] = V[εi(1)].

Then for the depth K (possibly non-maximal) causal tree,

E

[ ∫

X

(τ̂ HON
SSE

(x) − τ)2dFX(x)

]

≤ C
2K log(n)5

n
,

provided ρ−1 ≤ nT

nτ
≤ ρ for some ρ ∈ (0, 1), and C is a positive constant that only depends on ρ and the

distribution of (εi(0), εi(1), di). Moreover,

lim sup
n→∞

P

(∫

X

(τ̂ HON
SSE

(x) − τ)2dFX(x) ≥ C ′ 2
K log(n)5

n

)

= 0,

where C ′ is a positive constant that only depends on ρ and the distribution of (εi(0), εi(1), di).
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SA-3.3.3 X-adaptive Tree

Corollary SA-35. Suppose Assumption SA–2 holds with V[εi(0)] = V[εi(1)]. Suppose lim infn→∞
Kn

log log(n) >

0. Then

lim inf
n→∞

P

(

sup
x∈X

|τ̂ X
SSE

(x;Kn) − τ | > C

)

> 0.

Corollary SA-36 (L2 Consistency). Suppose Assumption SA–2 holds with V[εi(0)] = V[εi(1)]. Then

E

[ ∫

X

(τ̂ X
SSE

(x;K) − τ)2dFX(x)

]

≤ C
K 2K

n
,

where C is some constant not depending on n.

SA-3.4 Additional Results

SA-3.4.1 Squared T-statistic Estimators

The fourth method proposed by Athey and Imbens [2016] is the squared T-statistic trees, where at the root

node the index and coordinate to split (̂ı, ȷ̂) are chosen so that the squared T-statistics metric is maximized,

that is,

ı̂, ȷ̂ = arg max
k∈[n],ℓ∈[p]

n
(τ̂L(k, ℓ) − τ̂R(k, ℓ))2

S(k, ℓ)2/k + S(k, ℓ)2/(n− k)
,

where τ̂L(k, ℓ) and τ̂R(k, ℓ) are the causal tree estimators for the left and right nodes respectively based on

split coordinate ℓ and index k, and S(k, ℓ)2 is the conditional sample variance given the split, that is,

S(k, ℓ)2 =
1

n− 2

∑

i≤k

(τi − τ̂L(k, ℓ))2 +
1

n− 2

∑

i>k

(τi − τ̂R(k, ℓ))2

=
1

n− 2

[ n∑

i=1

(τi − n−1
n∑

j=1

τi)
2 − k(n− k)

n
(τ̂L(k, ℓ) − τ̂R(k, ℓ))2

]

.

Putting together, we see the squared T-statistics metric is a monotone transformation of the split criterion

of previously studied estimators,

n
(τ̂L(k, ℓ) − τ̂R(k, ℓ))2

S(k, ℓ)2/k + S(k, ℓ)2/(n− k)

= n
k(n− k)

n
(τ̂L(k, ℓ) − τ̂R(k, ℓ))2

(
1

n− 2

n∑

i=1

(τi − n−1
n∑

j=1

τi)
2 − 1

n− 2

k(n− k)

n
(τ̂L(k, ℓ) − τ̂R(k, ℓ))2

)−1

.

Hence the split is always the same as the split by the split criterion studied in Section SA-3.1 and Section SA-

3.2.
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SA-3.4.2 Unbiasedness under Symmetric Error

Lemma SA-37 (Unbiasedness). Suppose Assumption SA–2 holds, and εi(0), εi(1) are symmetrically dis-

tributed around zero. Then

E[τ̂ ql (x;K)] = τ, l ∈ {DIM, IPW, SSE}, q ∈ {NSS, X}, K ≥ 1,

and suppose t is the node containing x, then

E[τ̂ HONl (x;K)] = τ − τP(n(t) = 0), l ∈ {IPW},
E[τ̂ HONl (x;K)] = τ − τP(n0(t) = 0 or n1(t) = 0), l ∈ {DIM, SSE}.

SA-4 Proofs

SA-4.1 Proof of Theorem SA-1

First, we introduce some notations. Recall for ℓ ∈ [p], πℓ denotes the permutation such that (xπℓ(i) : 1 ≤ i ≤
n) is non-decreasing. Define sample mean at the left and right leave at index k ∈ [n] based on coordinate

ℓ ∈ [p] by

µ̂L(k, ℓ) =
1

k

k∑

i=1

yπℓ(i), µ̂R(k, ℓ) =
1

n− k

n∑

i=k+1

yπℓ(i), k ∈ [n], ℓ ∈ [p].

We can check that minimizing the sum of squares criterion Equation (SA-2) is equivalent to maximizing the

split criterion

(̂ı, ȷ̂) = arg max
(i,j)∈[n]×[p]

I (i, j).

where

I (k, ℓ) =
k(n− k)

n

(

µ̂L(k, ℓ) − µ̂R(k, ℓ)
)2

, k ∈ [n], ℓ ∈ [p].

Moreover, under the constant conditional mean assumption, Assumption SA–1 (1), we have that µ̂L(k, ℓ) −
µ̂R(k, ℓ) = 1

k

∑k
i=1 επℓ(i) − 1

n−k

∑n
i=k+1 επℓ(i). Hence we can w.l.o.g. replace yi by εi in the definition of µ̂L

and µ̂R, that is,

µ̂L(k, ℓ) =
1

k

k∑

i=1

επℓ(i), µ̂R(k, ℓ) =
1

n− k

n∑

i=k+1

επℓ(i), k ∈ [n], ℓ ∈ [p].

The rest of the proof is organized as follows. In Section SA-4.1.1, we prove the results under p = 1, showing a

strong approximation of the split criterion (I (k, 1) : k ∈ [n]) by the square of a time-transformed Ornstein-

Uhlenbeck (O-U) process, and studying the argmax of the split criterion through the argmax of the O-U

process. In Section SA-4.1.2, we generalize to allow for p ≥ 1. We show that the split criterion over different

coordinates, that is, (I (k, ℓ) : k ∈ [n]) for different ℓ’s, are asymptotically independent. This reduces our

problem to one-dimensional calculations, and the same technique of approximation by O-U process from
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Section SA-4.1.1 can be used.

SA-4.1.1 Univariate Case

This the case when p = 1. For notational simplicity, define partial sums by

Sk =

k∑

i=1

επ1(i), k ∈ [n].

By Csörgö and Horváth [1997, Equation A.4.37], we can define a sequence of Brownian bridges {Bn(t) : 0 ≤
t ≤ 1} on a suitable probability space such that

∣
∣
∣
∣

max
1≤k<n

√

I (k, 1) − sup
1/n≤t≤1−1/n

|Bn(t)|
√

t(1 − t)

∣
∣
∣
∣

=

∣
∣
∣
∣

max
1≤k<n

∣
∣
∣

1√
n
Sk − k

n
1√
n
Sn

∣
∣
∣

√

(k/n)(1 − k/n)
− sup

1/n≤t≤1−1/n

|Bn(t)|
√

t(1 − t)

∣
∣
∣
∣

= ϵn,

(SA-12)

where ϵn = oP
(
(log log(n))−1/2

)
. We note that while Csörgö and Horváth [1997, Equation A.4.37] bounds

the approximation error of the maximum over the full range 1 ≤ k < n as in (SA-12), its proof, which

relies on invariance principles for partial sums of i.i.d. random variables, can be generalized to bound the

approximation error over 1 ≤ k < na, nb < k < n. Thus,

∣
∣
∣
∣

max
1≤k<na, nb<k<n

∣
∣
∣

1√
n
Sk − k

n
1√
n
Sn

∣
∣
∣

√

(k/n)(1 − k/n)
− sup

1/n≤t<na−1, nb−1<t≤1−1/n

|Bn(t)|
√

t(1 − t)

∣
∣
∣
∣

= ϵn. (SA-13)

We note that the standardized Brownian bridge
{
Bn(t)/

√

t(1 − t) : 0 < t < 1
}

is distributionally

equivalent to a time-transformed Ornstein-Uhlenbeck (O-U) process
{
U(log(t/(1 − t))) : 0 < t < 1

}
, where

{
U(t) : t ∈ R

}
is an O-U process with mean E[U(t)] = 0 and covariance E[U(s)U(t)] = e−|s−t|/2 [Csörgö

and Révész, 1981, Section 1.9], and thus

P

(

sup
1/n≤t≤1−1/n

|Bn(t)|
√

t(1 − t)
> sup

1/n≤t<na−1, nb−1<t≤1−1/n

|Bn(t)|
√

t(1 − t)
+ 2ϵn

)

= P

(

sup
− log(n−1)≤t≤log(n−1)

|U(t)| > sup
− log(n−1)≤t<log( na−1

1−na−1 ), log( nb−1

1−nb−1 )<t≤log(n−1)

|U(t)| + 2ϵn

)

= P

(

sup
0≤t≤2 log(n−1)

|U(t)| > sup
0≤t<log(

na−1(n−1)

1−na−1 ), log
nb−1(n−1)

1−nb−1 )<t≤2 log(n−1)

|U(t)| + 2ϵn

)

, (SA-14)

where the last equality follows from stationarity of the process |U(t)|, the square of which is a Cox-Ingersoll-

Ross (CIR) process [Göing-Jaeschke and Yor, 2003]. Continuing from (SA-14), for any sequence un, we
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have

P

(

sup
0≤t≤2 log(n−1)

|U(t)| > sup
0≤t<log(

na−1(n−1)

1−na−1 ), log
nb−1(n−1)

1−nb−1 )<t≤2 log(n−1)

|U(t)| + 2ϵn

)

≥ P

(

sup
0≤t≤2 log(n−1)

|U(t)| ≥ un, sup
0≤t<log(

na−1(n−1)

1−na−1 ), log
nb−1(n−1)

1−nb−1 )<t≤2 log(n−1)

|U(t)| < un − 2ϵn

)

≥ P

(

sup
0≤t<log(

na−1(n−1)

1−na−1 ), log
nb−1(n−1)

1−nb−1 )<t≤2 log(n−1)

|U(t)| < un − 2ϵn

)

− P

(

sup
0≤t≤2 log(n−1)

|U(t)| < un

)

.

(SA-15)

Now, since U(t) is a continuous, mean-zero Gaussian process, it induces a centered Gaussian measure on

the space of all continuous functions on
[
0, 2 log(n − 1)

]
equipped with the supremum norm (a separable

Banach space). Thus, by the Gaussian correlation inequality [Lata la and Matlak, 2017, Remark 3 (i)], we

have that

P

(

sup
0≤t<log(

na−1(n−1)

1−na−1 ), log
nb−1(n−1)

1−nb−1 )<t≤2 log(n−1)

|U(t)| < un − 2ϵn

)

≥ P

(

sup
0≤t<log(

na−1(n−1)

1−na−1 )

|U(t)| < un − 2ϵn

)

· P
(

sup
log

nb−1(n−1)

1−nb−1 )<t≤2 log(n−1)

|U(t)| < un − 2ϵn

)

= P

(

sup
0≤t<log(

na−1(n−1)

1−na−1 )

|U(t)| < un − 2ϵn

)

· P
(

sup
0<t≤log(

n1−b(n−1)

1−nb−1 )

|U(t)| < un − 2ϵn

)

, (SA-16)

where the last equality follows from stationarity.

Remark SA-3. The next step of our proof relies on a precise characterization of weak convergence for the

suprema of a standardized empirical process, as studied in [Eicker, 1979]. However, Eicker [1979, Theorem

5] is incorrectly stated: the 2 log(c) term appearing in the limiting probability should be log(c). This correction

has important implications in our proof.

By the Darling-Erdős Limit Theorem for the O-U process [Csörgö and Révész, 1981, Theorem 1.9.1] and

[Eicker, 1979, Theorem 2.2 and the correct version of Theorem 5], for all c > 0 and z ∈ R, we have

lim
n→∞

P

(

sup
0≤t≤(c+o(1)) log(n)

|U(t)| < 2 log log(n) + (1/2) log log log(n) + z − (1/2) log(π)
√

2 log log(n)

)

= exp
(

− e−(z−log(c))
)

. (SA-17)

For a detailed proof of a generalized result on multidimensional O-U process, see Remark SA-1.

Let z∗ maximize z 7→ exp
(
− 2e−(z−log(2−(b−a)))

)
− exp

(
− 2e−(z−log(2))

)
, and set

un =
2 log log(n) + (1/2) log log log(n) + z∗ − (1/2) log(π)

√

2 log log(n)
.

We combine (SA-14), (SA-15), and (SA-16), and employ (SA-17) three times with c = 2 and c = 2 − b, and
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c = a, together with the fact that ϵn = oP
(
(log log(n))−1/2

)
. We have that

lim inf
n→∞

P

(

sup
1/n≤t≤1−1/n

|Bn(t)|
√

t(1 − t)
> sup

1/n≤t<na−1, nb−1<t≤1−1/n

|Bn(t)|
√

t(1 − t)
+ 2ϵn

)

≥ exp
(

− 2e−(z∗−log(a))
)

· exp
(

− 2e−(z∗−log(2−b))
)

− exp
(

− 2e−(z∗−log(2))
)

= exp
(

− 2e−(z∗−log(2−(b−a)))
)

− exp
(

− 2e−(z∗−log(2))
)

=
b− a

2

(

1 − b− a

2

) 2
b−a−1

≥ b− a

2e
. (SA-18)

Remark SA-4. Alternatively, for any 0 < A < B < C, we have

P

(

sup
0≤t≤C

|U(t)| > sup
0≤t≤A, B≤t≤C

|U(t)|
)

=
B −A

C
. (SA-19)

This can readily be shown using the fact that the absolute value of a zero-mean O-U process is stationary,

Markov, and has continuous paths. Consequently, ignoring the stochastic error ϵn from approximating the

split criterion (SA-3) by the square of a standardized Brownian bridge (not yet justified), using (SA-19), we

can approximate the probability P(max1≤k≤n I (k, 1) > max1≤k<na,nb<k<n I (k, 1)) by

P

(

sup
0≤t≤2 log(n−1)

|U(t)| > sup
0≤t<log(

na−1(n−1)

1−na−1 ), log
nb−1(n−1)

1−nb−1 )<t≤2 log(n−1)

|U(t)|
)

=
log nb−1(n−1)

1−nb−1 ) − log(na−1(n−1)
1−na−1 )

2 log(n− 1)
→ b− a

2
, n → ∞. (SA-20)

SA-4.1.2 Multivariate Case

Now we prove for the general case of p ≥ 1. As a sketch of the proof, we show that the split criterion over

different coordinates, that is, (I (k, ℓ) : k ∈ [n]) for different ℓ’s, are asymptotically independent, which will

imply

lim inf
n→∞

P
(
na ≤ ı̂ ≤ nb, ȷ̂ = ℓ

)

= lim inf
n

P

(

max
k

I (k, 1) > max
k,j ̸=1

I (k, j), max
k

I (k, 1) > max
k/∈[na,nb]

I (k, 1)
)

≥ lim inf
n

P

(

max
k

I (k, 1) > zn > max
k,j ̸=1

I (k, j), max
k

I (k, 1) > zn > max
k/∈[na,nb]

I (k, 1)
)

(∗)
=
(

lim inf
n

P

(

max
k

I (k, 1) < zn

))p−1

lim inf
n

P

(

max
k

I (k, 1) > zn > max
k/∈[na,nb]

I (k, 1)
)

.

where in equality (*) we use asymptotic independence between I (·, ℓ) for different ℓ’s, and the last line are

one-dimensional probabilities that can be handled by O-U process approximation like in Section SA-4.1.1.

To show the split criteria over different coordinates are asymptotically independent, we break down

into two steps: In the first step, we show the partial sum process n indices and p coordinates can be

approximated by another partial sum process with Gaussian increments (hence a Gaussian process), with

the same covariance structure. In the second step, we show the covariance between the split criteria over
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any two different coordinates and any indices are vanishing. Together with Gaussianity, this implies that

the split criteria over different coordinates are asymptotically independent.

Step 1: Non-Gaussian to Gaussian Coupling.

For 1 ≤ ℓ ≤ p, denote by Hℓ
n( k

n ) the scaled partial sum for the ℓ-th coordinate evaluated at time k
n , that is,

Hℓ
n

(
k

n

)

=

√
n

k(n− k)

{ k∑

i=1

επℓ(i) −
k

n

n∑

i=1

επℓ(i)

}

=

√
n

k(n− k)

n∑

i=1

(

1(#πℓ(i) ≤ k) − k

n

)

εi,

where #πℓ : [n] → [n] is the inverse mapping of πℓ.

We use a truncation argument for the proof. Fix ε ∈ (0, 1). Take rn = exp((log n)ε). And consider

Ci =
√
n
((√ n

k(n− k)
(1(#πℓ(i) ≤ k) − k

n
) : rn ≤ k ≤ n− rn

)⊤
: 1 ≤ ℓ ≤ p

)⊤
εi,

where #πℓ denotes the inverse mapping of πℓ. Notice that we add the
√
n factor for standardization. Then

we can check that condition on B, the σ-algebra generateed by the p permulations π1, · · · , πp, Ci’s are

independent, and for all 1 ≤ j ≤ p(n− 2rn), 1 ≤ ℓ ≤ p, we have

n−1
n∑

i=1

E[C2
ij |B] =

n

k(n− k)

[

k
(n− k

n

)2

+ (n− k)
(k

n

)2
]

= 1,

where we assume row j in Ci corresponds to
√
n
√

n
k(n−k) (1(#πℓ(i) ≤ k) − k

n ). To use the coupling result

[Chernozhukov et al., 2017, Theorem 2.1], we bound a few quantities: Suppose K1 and K2 are the universal

constants given in the cited theorem,

Ln = max
1≤j≤p(n−2rn)

n∑

i=1

E[|Cij |3|B]/n

= max
1≤ℓ≤p

max
rn≤k≤n−rn

n3/2
( n

k(n− k)

)3/2[

k(1 − k/n)3 + (n− k)(−k/n)3
]

E[|εi|3]/n

≲ max
1≤ℓ≤p

max
rn≤k≤n−rn

(n− 2k)
√
n

√

(n− k)nk

≲
√

n/rn. (SA-21)

For notational simplicity, denote P = p(n− 2rn). Take L̄n = Ln, then

ϕn = K2

(
L̄2
n log4(P)

n

)−1/6

= K2

(
rn

log4(P)

)1/6

.
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The definition of Ci implies Cij is
√

n/rn-exponential. Hence

Mn,X(ϕn) = n−1
n∑

i=1

E

[

max
1≤j≤P

|Cij |31
(

max
1≤j≤P

|Cij | >
√
n/(4ϕn log(P))

)
∣
∣
∣
∣
B

]

≤ n−1
n∑

i=1

E

[

max
1≤j≤P

|Cij |6
∣
∣
∣
∣
B

]1/2

P

[

max
1≤j≤P

|Cij | >
√
n/(4ϕn log(P))

∣
∣
∣
∣
B

]1/2

≤ n−1
n∑

i=1

[
∑

1≤j≤P

E[C6
ij |B]

]1/2[ ∑

1≤j≤P

P

(

|Cij | >
√
n/(4ϕn log(P))

∣
∣
∣B

)]1/2

≲ n−1
n∑

i=1

(P(n/rn)3)1/2
[

P exp
(

−
√
n/(4ϕn log(P))
√

n/rn

)]1/2

≲ P(n/r3n)1/2 exp
(

− 1

4

( rn
log P

)1/3)

≲ n−2,

since rn = exp((log n)ε) and ε, p are fixed. Now condition on B, let Di, 1 ≤ i ≤ n to be independent

mean-zero Gaussian random vectors such that

Di ∼ N(0,E[CiC
⊤
i |B]), condition on B.

Then for each 1 ≤ j ≤ P, 1 ≤ i ≤ n, we have Dij is r−1
n -subGaussian. Hence the same argument implies

Mn,Y (ϕn) ≲ n−2.

[Chernozhukov et al., 2017, Theorem 2.1] then implies

sup
A∈Are

∣
∣
∣
∣
P

( n∑

i=1

Ci ∈ A
∣
∣
∣B

)

− P

( n∑

i=1

Di ∈ A
∣
∣
∣B

)
∣
∣
∣
∣
≤ K1

[( L̄2
n log7(P)

n

)1/6

+
Mn,X(ϕn) + Mn,Y (ϕn)

L̄n

]

≲

(
log7(P)

rn

)1/6

+

√
rn
n

1

n2

≲

(
log7(n)

rn

)1/6

, (SA-22)

where Are is the class of all rectangles A of the form

A = {u ∈ R
P : aj ≤ uj ≤ bj , ∀j = 1, 2, · · · , P},

for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, 2, · · · , P. In particular, suppose ui, 1 ≤ i ≤ n are i.i.d N(0,E[ε2i ])

random variables, then Di can be taken such that

Di =
√
n
((√ n

k(n− k)
(1(#πℓ(i) ≤ k) − k

n
) : rn ≤ k ≤ n− rn

)⊤
: 1 ≤ ℓ ≤ p

)⊤
ui.
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The above result shows if we define

Gℓ
n

(
k

n

)

=

√
n

k(n− k)

{ k∑

i=1

uπℓ(i) −
k

n

n∑

i=1

uπℓ(i)

}

,

then Equation (SA-22) and unconditioning on B, we get

sup
t1,···tp∈R

∣
∣
∣P

(

max
rn≤k≤n−rn

|Hℓ
n(k/n)| ≤ tℓ, 1 ≤ ℓ ≤ p

)

− P

(

max
rn≤k≤n−rn

|Gℓ
n(k/n)| ≤ tℓ, 1 ≤ ℓ ≤ p

)∣
∣
∣ ≲

(
log7(n)

rn

)1/6

.

Step 2: Gaussian to Gaussian Coupling.

For 1 ≤ ℓ ≤ p, denote by Gℓ
n( k

n ) the partial sum for the ℓ-th coordinate evaluated at time k
n , that is,

Gℓ
n

(
k

n

)

=

√
n

k(n− k)

{ k∑

i=1

uπℓ(i) −
k

n

n∑

i=1

uπℓ(i)

}

.

Then Gn = ((G1
n(1/n), G1

n(2/n), · · · , G1
n(n/n))⊤, · · · , (Gp

n(1/n), Gp
n(2/n), · · · , Gp

n(n/n))⊤)⊤. Then Gn is a

np-dimensional Gaussian random vector, and denote by Σn its covariance matrix. We want to show that

Σn is close to one with covariance between different coordinates zero.

Consider two different coordinates, ℓ1, ℓ2 ∈ [p]. W.l.o.g, we can assume ℓ1 = 1 and ℓ2 = 2. Let k, j ∈ [n].

Denote by σ the sigma-algebra generated by π1, · · · , πp. Then

Cov

[

G1
n

(
k

n

)

, G2
n

(
j

n

)∣
∣
∣
∣
σ

]

=

√
n

k(n− k)

n

j(n− j)

{ k∑

i=1

j
∑

i′=1

E[uπ1(i)uπ2(i′)|σ] − j

n

k∑

i=1

n∑

i′=1

E[uπ1(i)uπ2(i′)|σ]

− k

n

n∑

i=1

j
∑

i′=1

E[uπ1(i)uπ2(i′)|σ] +
kj

n2

n∑

i=1

n∑

i′=1

E[uπ1(i)uπ2(i′)|σ]

}

=

√
n

k(n− k)

n

j(n− j)

jk

n

{
n

jk

k∑

i=1

j
∑

i′=1

E[uπ1(i)uπ2(i′)|σ] − 1

}

.

To calculate
∑k

i=1

∑j
i′=1 E[uπ1(i)uπ2(i′)|σ], we can first condition on π1, and let I = {π1(i) : 1 ≤ i ≤ k}.

Observe that
∑k

i=1

∑j
i′=1 E[uπ1(i)uπ2(i′)|σ] = |{i′ ∈ [j] : π1(i′) ∈ I}|. Now consider

f(π) =
n

jk
|{i ∈ [j] : π(i) ∈ I}|,

π is a random permutation of [n]. Changing the order of the first j values of π does not change the value

of f(π), and |f(π) − f(πs,t)| ≤ n
jk for all π, s ∈ {1, · · · , j}, t ∈ {j + 1, · · · , n}, where the permutation πs,t

is obtained from π by transposition of its sth and tth coordinates. We will show later that w.l.o.g. we can
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assume j, k ≤ ⌈n/2⌉. Then by Lemma 2 from El-Yaniv and Pechyony [2009], for any t ≥ 0,

P

(∣
∣
∣
∣

n

jk

k∑

i=1

j
∑

i′=1

E[uπ1(i)uπ2(i′)|σ] − 1

∣
∣
∣
∣
≥ t

∣
∣
∣
∣
π1

)

=P(|f(π2) − E[f(π2)]| ≥ t|π1)

≤2 exp

(

− 2t2

j( n
jk )2

n− 1/2

n− j
(1 − 1

2 max(j, n− j)
)

)

.

Since n−1/2
n−j (1 − 1

2max(j,n−j) ) ≥ 1 − 1
n , we can marginalize over π1 and uncondition on σ to get there exists

a positive constant C such that for n large enough, for all j, k ∈ [n],

| n
jk

k∑

i=1

j
∑

i′=1

E[uπ1(i)uπ2(i′)|σ] − 1| ≤ C
n√
jk

.

which implies

|Cov[G1
n(

k

n
), G2

n(
j

n
)]| ≤ C

√

jk

(n− k)(n− j)

n√
jk

1√
k
≤ Ck−1/2. (SA-23)

The reduction to j, k ≤ ⌈n/2⌉ is because

Gℓ
n

(
k

n

)

=

√
n

k(n− k)

{ k∑

i=1

uπℓ(i) −
k

n

n∑

i=1

uπℓ(i)

}

= −
√

n

k(n− k)

{ n∑

i=k+1

uπℓ(i) −
n− k

n

n∑

i=1

uπℓ(i)

}

.

Now consider a np-dimensional mean-zero Gaussian random vector

Zn = ((Z1
n(1/n), Z1

n(2/n), · · · , Z1
n(n/n))⊤, · · · , (Zp

n(1/n), Zp
n(2/n), · · · , Zp

n(n/n))⊤)⊤,

where for each 1 ≤ ℓ ≤ p, (Zℓ
n(1/n), Zℓ

n(2/n), · · · , Zℓ
n(n/n))⊤ has the same joint distribution as the partial

sum random vector (Gℓ
n(1/n),Gℓ

n(2/n), · · · , Gℓ
n(n/n))⊤, and for any ℓ ̸= ℓ′ and any j, k ∈ [n],

Cov[Zℓ
n(j/n), Zℓ′

n (k/n)] = 0.

Denote by Γn the covariance matrix of Zn. We want to show Γn is close to Σn. For a tight control on the

rate of convergence, consider the truncated random vector,

Trn(Gn) = ((Gℓ
n(k/n) : rn ≤ k ≤ n− rn)⊤ : 1 ≤ ℓ ≤ p)⊤,

Trn(Zn) = ((Zℓ
n(k/n) : rn ≤ k ≤ n− rn)⊤ : 1 ≤ ℓ ≤ p)⊤.

Also by an abuse of notations, denote by Trn(Σn) and Trn(Γn) the covariance matrix of Trn(Gn) and

Trn(Zn), respectively. Then Equation (SA-23) implies

∥Trn(Σn) − Trn(Γn)∥max = O(r−1/2
n ). (SA-24)
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Additionally, we can lower bound the variance of each item of Trn(Zn) by the following conditioning argu-

ment: Condition on the permutations πℓ, 1 ≤ ℓ ≤ p, then

V[Zℓ
n(k/n)|πℓ, 1 ≤ ℓ ≤ p] = V[Gℓ

n(k/n)|πℓ, 1 ≤ ℓ ≤ p]

= V

[√
n

k(n− k)

( k∑

i=1

uπℓ(i) −
k

n

n∑

i=1

uπℓ(i)

)
∣
∣
∣
∣
πℓ, 1 ≤ ℓ ≤ p

]

= V

[√
n

k(n− k)

( k∑

i=1

ui −
k

n

n∑

i=1

ui

)]

= 1, 1 ≤ k < n, 1 ≤ ℓ ≤ p,

where in the third line, we have used the fact that condition on πℓ, 1 ≤ ℓ ≤ p, (uπℓ(i))i∈[n]’s are i.i.d. N(0, 1).

By the Gaussian-to-Gaussian Comparison result [Chernozhuokov et al., 2022, Proposition 2.1],

sup
y∈RpT (n)

|P(Trn(Gn) ≤ y) − P(Trn(Zn) ≤ y)| ≤ C log(n)∥Trn(Σn) − Trn(Γn)∥max,

where C is an absolute constant, and T (n) = ⌈n− rn⌉−⌊rn⌋. Combining with Equation (SA-24) and taking

y = (t11
⊤, · · · tp1⊤), y = −(t11

⊤, · · · tp1⊤) separately with 1 a vector of T (n) 1’s, we get

sup
t1,···tp∈R

∣
∣
∣P

(

max
rn≤k≤n−rn

|Gℓ
n(k/n)| ≤ tℓ, 1 ≤ ℓ ≤ p

)

− P

(

max
rn≤k≤n−rn

|Zℓ
n(k/n)| ≤ tℓ, 1 ≤ ℓ ≤ p

)∣
∣
∣

= O(log(n)r−1/2
n ). (SA-25)

Step 3: Reduction of calculations of one-dimensional O-U process

As in the previous two sections, fix ε > 0, and take rn = exp((log n)ε). LetE = {∃ℓ ∈ [p] : arg maxk I (k, ℓ) <

rn or arg maxk I (k, ℓ) > n − rn}. Then by [Csörgö and Horváth, 1997, proof of Theorem A.4.2], and a

union bound argument, we have

P(E) ≤
p
∑

ℓ=1

P(arg max
k

I (k, ℓ) < rn or arg max
k

I (k, ℓ) > n− rn) = o(1).

Hence we can effectively restrict the candidates of arg max to [rn, n− rn]. W.l.o.g., we consider coordinate

ℓ = 1, and

lim inf
n→∞

P
(
na ≤ ı̂ ≤ nb, ȷ̂ = ℓ

)

= P

(

max
k∈[n]

I (k, 1) > max
k,j ̸=1

I (k, j), max
k∈[n]

I (k, 1) > max
k/∈[na,nb]

I (k, 1)
)

≥ P

(

max
k∈[n]

I (k, 1) > max
k,j ̸=1

I (k, j), max
k∈[n]

I (k, 1) > max
k/∈[na,nb]

I (k, 1),Ec
)

− P(E)

≥ P

(

max
k∈[rn,n−rn]

I (k, 1) > max
k,j ̸=1

I (k, j), max
k∈[rn,n−rn]

I (k, 1) > max
k/∈[na,nb]

I (k, 1)
)

− 2P(E)

≥ P

(

max
k∈[rn,n−rn]

I (k, 1) > max
k,j ̸=1

I (k, j), max
k∈[rn,n−rn]

I (k, 1) > max
k/∈[na,nb]

I (k, 1)
)

+ o(1).

Now we can using the coupling result developed previously. Using our notation, we have I (k, ℓ) =
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(Hℓ
n(k/n))2. Hence

P

(

max
k∈[rn,n−rn]

I (k, 1) > max
j ̸=1,k∈[rn,n−rn]

I (k, j), max
k∈[rn,n−rn]

I (k, 1) > max
k/∈[na,nb]

I (k, 1)
)

= P

(

max
k∈[rn,n−rn]

|H1
n

(k

n

)

| > max
ℓ ̸=1,k∈[rn,n−rn]

|Gℓ
n

(k

n

)

|, max
k∈[rn,n−rn]

|H1
n

(k

n

)

| > max
k/∈[na,nb]

|H1
n

(k

n

)

|
)

≥ sup
z∈R

P

(

max
k∈[rn,n−rn]

|H1
n

(k

n

)

| > z > max
ℓ ̸=1,k∈[rn,n−rn]

|Hℓ
n

(k

n

)

|, max
k∈[rn,n−rn]

|H1
n

(k

n

)

| > z > max
k/∈[na,nb]

|H1
n

(k

n

)

|
)

≥ sup
z∈R

P

(

max
k∈[rn,n−rn]

|Z1
n

(k

n

)

| > z > max
ℓ ̸=1,k∈[rn,n−rn]

|Zℓ
n

(k

n

)

|, max
k∈[rn,n−rn]

|Z1
n

(k

n

)

| > z > max
k/∈[na,nb]

|Z1
n

(k

n

)

|
)

+ O(log(n)7/6r−1/6
n ),

where we have used Lemma SA-17 and Lemma SA-18. Since we choose rn = exp((log n)ε), we have

log(n)7/6r
−1/6
n = o(1). It then follows from independence and symmetry between Zℓ

n’s across different

ℓ’s that

lim inf
n→∞

sup
z∈R

P

(

max
k∈[rn,n−rn]

|Z1
n

(k

n

)

| > z > max
ℓ ̸=1,k∈[rn,n−rn]

|Zℓ
n

(k

n

)

|, max
k∈[rn,n−rn]

|Z1
n

(k

n

)

| > z > max
k/∈[na,nb]

|Z1
n

(k

n

)

|
)

≥ lim inf
n→∞

sup
z∈R

P( max
k∈[rn,n−rn]

|Z1
n

(k

n

)

| < z)p−1
P( max

k∈[rn,n−rn]
|Z1

n

(k

n

)

| > z > max
k∈[rn,n−rn],k/∈[na,nb]

|Z1
n

(k

n

)

|)

≥ sup
z

exp
(

− 2(p− 1)e−(z−log(2))
)(

exp
(

− 2e−(z−log(2−(b−a)))
)

− exp
(

− 2e−(z−log(2))
))

=
b− a

2p

(

1 − b− a

2p

) 2p
b−a−1

≥ b− a

2pe
,

where the third line is by similar calculation as in Section SA-4.1.1. Putting together, we have

lim inf
n→∞

P
(
na ≤ ı̂ ≤ nb, ȷ̂ = ℓ

)
≥ b− a

2pe
,

and by symmetry, we have

lim inf
n→∞

P
(
n− na ≤ ı̂ ≤ n− nb, ȷ̂ = ℓ

)
≥ b− a

2pe
.

SA-4.2 Proof of Remark SA-1

Taking T = c log(n) in [Horváth, 1993, Lemma 2.1], we have

lim
n→∞

P

(

sup
0≤t≤c log(n)

N(log(n)) ≤ z + bd(c log(n))

a(c log(n))

)

= exp
(

− e−z
)

.

Now we expand the term z+bd(c log(n))
a(c log(n)) . For notational simplicity, denote

L = log log n, A = log c, L → ∞ (n → ∞).
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First, we present some elementary expansions,

√

2(A + L) =
√

2L

√

1 +
A

L
=

√
2L
(

1 +
A

2L
− A2

8L2
+ O

(
L−3

))

,

1
√

2(A + L)
=

1√
2L

(

1 − A

2L
+

3A2

8L2
+ O

(
L−3

))

,

log(L + A) = logL +
A

L
− A2

2L2
+ O

(
L−3

)
.

Now we expand the terms for the numerator bd(c log(n)),

N1 = z + 2A + 2L +
d

2
log
(
log(c log n)

)
− log Γ(d/2),

N2 = z + 2A + 2L +
d

2
logL− log Γ(d/2),

N3 = z + A + 2L +
d

2
logL− log Γ(d/2).

Then

z + bd(c logn)

a(c log(n))
− z + log(c) + bd(log n)

a(log(n))

=
N1

√

2(A + L)
− N3√

2L

= N1

(
1

√

2(A + L)
− 1√

2L

)

+
1√
2L

(N1 −N3)

= N1
1√
2L

(

− A

2L
+

3A2

8L2
+ O(L−3)

)

+
1√
2L

(
d

2

(A

L
− A2

2L2
+ O(L−3)

)

+ A

)

.

Since N1 = 2L + O(log log log(n)), we have

z + bd(c logn)

a(c log(n))
− z + log(c) + bd(log n)

a(log(n))
=

3A2

4
√

2L3/2
+

dA

2
√

2L3/2
+ o(L−3/2) = o(L−1/2).

Since a(log(n)) = Θ(L1/2), we have

P

(

sup
0≤t≤c log(n)

N(log(n)) ≤ z + c log(n) + bd(log(n))

a(log(n))

)

= P

(

sup
0≤t≤c log(n)

N(log(n)) ≤ z + o(1) + bd(c log(n))

a(c log(n))

)

= P

(

a(c log(n)) sup
0≤t≤c log(n)

N(log(n)) − bd(c log(n)) ≤ z + o(1)

)

→ exp(−e−z) as n → ∞,

where the last line follows from convergence in distribution of a(c log(n)) sup0≤t≤c log(n) N(log(n))−bd(c log(n))

to a continuous distribution and Slutsky’s Theorem.

SA-4.3 Proof of Theorem SA-2

For simplicity, we denote µ̂NSS(x) by µ̂(x). We divide the proofs into two parts, one for uniform estimation

and one for pointwise results near the boundary.
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Part 1: Inconsistency for Uniform Estimation Rates

For notational simplicity, introduce the partial sum based on ordering for the ℓ’s coordinate,

S(k, ℓ) =
k∑

i=1

επℓ(i), k ∈ [n], ℓ ∈ [p],

and define the optimal index for splitting based on the ℓ’s coordinate by

ıℓ = arg max
k∈[n]

I (k, ℓ), ℓ ∈ [p].

Consider the event

Imbalanceℓ = {ȷ̂ = ℓ, ı̂ < nb or ı̂ > n− nb}
= {max

k
I (k, ℓ) > max

k,j ̸=ℓ
I (k, j), max

k
I (k, ℓ) > max

k∈[nb,n−nb]
I (k, ℓ)}, ℓ ∈ [p].

Consider the case ı̂ < nb on Imbalanceℓ. The other case where ı̂ > n− nb can be dealt with by symmetry.

Then

sup
x∈X

|µ̂(x) − µ|2

≥ S(ıℓ, ℓ)
2

ı2ℓ

≥ 1

ıℓ

[
S(ıℓ, ℓ)

2

ıℓ
+

(S(n, ℓ) − S(ıℓ, ℓ))
2

n− ıℓ
− (S(n, ℓ) − S(ıℓ, ℓ))

2

n− ıℓ

]

≥ 1

min{ıℓ, n− ıℓ}

(

max
k∈[n]

(S(k, ℓ)2

k
+

(n− S(k, ℓ))2

n− k

)

− max
⌊n/2⌋≤k≤n

S(k, ℓ)2

k
− max

1≤k≤⌈n/2⌉

(n− S(k, ℓ))2

n− k

)

.

where the last line is because ıℓ is the index that maximize the split criterion based on the ℓ’s coordinate,

i.e.,

ıℓ = arg max
k∈[n]

n∑

i=1

(yi − ȳ)2 −
k∑

i=1

(yπℓ(i) − S(k, ℓ)/k)2 −
n∑

i=k+1

(yi − (S(n, ℓ) − S(k, ℓ))/(n− k))2

= arg max
k∈[n]

S(k, ℓ)2

k
+

(S(n, ℓ) − S(k, ℓ))2

n− k
.

Fix ϵ > 0. Consider the events

Aϵ
ℓ =

{

max
k∈[n]

S(k, ℓ)2

k
+

(n− S(k, ℓ))2

n− k
≥ (2 − ϵ) log log(n)

}

,

Bϵ
ℓ =

{

max
⌊n/2⌋≤k≤n

S(k, ℓ)2

k
+ max

1≤k≤⌈n/2⌉

(n− S(k, ℓ))2

n− k
≤ 2ϵ log log(n)

}

.
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By [Csörgö and Horváth, 1997, Theorem A.4.1] lim supn→∞ P(Aε
ℓ) = lim supn→∞ P(Bε

ℓ ) = 1. Hence for any

ϵ > 0,

P

(

sup
x∈X

|µ̂(x) − µ|2 ≥ (2 − 3ϵ) log log(n)

nb

)

≥
p
∑

ℓ=1

P(Imbalanceℓ ∩Aϵ
ℓ ∩Bϵ

ℓ) ≥
b

e
+ o(1),

where we have used the fact that Imbalanceℓ’s are disjoint for different ℓ’s and Theorem SA-1. Equa-

tion (SA-7) then follows.

Part 2: Inconsistency for Points Near the Boundary

Consider the event

Offℓ = {ȷ̂ = ℓ, ı̂ ∈ [na, nb]}
= {max

k
I (k, ℓ) > max

k,j ̸=ℓ
I (k, j), max

k
I (k, ℓ) > max

k/∈[na,n−nb]
I (k, ℓ)}, ℓ ∈ [p].

Since πℓ is the uniform permutation, we have

lim inf
n→∞

P(xℓ,ıℓ ≥ na−1) ≥ lim inf
n→∞

P(xℓ,πℓ(na) ≥ na−1) = 1.

Together with Theorem SA-1,

P(Offℓ, xℓ,ıℓ ≥ na−1) ≥ b− a

2pe
+ o(1).

Then on the event Offℓ and xℓ,ıℓ ≥ na−1, for any x ∈ [0, 1]p such that xℓ ≤ na−1, we have xℓ ≤ xℓ,ıℓ , and

|µ̂(x) − µ|2 =
S(ıℓ, ℓ)

2

ı2ℓ

=
1

ıℓ

(
S(ıℓ, ℓ)

2

ıℓ
+

(S(n, ℓ) − S(ıℓ, ℓ))
2

n− ıℓ
− (S(n, ℓ) − S(ıℓ, ℓ))

2

n− ıℓ

)

≥ 1

ıℓ

(

max
1≤k≤n

S(k, ℓ)2

k
+

(S(n, ℓ) − S(k, ℓ))2

n− k
− max

1≤k≤nb

(S(n, ℓ) − S(k, ℓ))2

n− k

)

.

By similar arguments as Part 1, we can show

lim inf
n→∞

inf
x∈Xn

P

(

|µ̂(x) − µ|2 ≥ (2 + o(1)) log log(n)

nb

)

≥ b− a

2pe
,

which is Equation (SA-8).

SA-4.4 Proof of Theorem SA-3

Due to the recursive splitting and Theorem SA-1, the optimal split index ı̂ at the Kn-th split (Kn ≥ 1) also

satisfies

lim inf
n→∞

P
(
ı̂ ≤ nb

)
= lim inf

n→∞
P
(
n− nb ≤ ı̂

)
≥ b

2e
.

Hence the same argument as Part 1 in the proof of Theorem SA-2 leads to the result.
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SA-4.5 Proof of Theorem SA-4

This follows directly from Klusowski and Tian [2024, Theorem 4.3], choosing g∗ ≡ µ and g ≡ µ, and changing

the sub-Gaussian rate to the sub-exponential rate by choosing U ≍ log(n) instead of U ≍
√

log(n) in the

truncation argument step. The last statement follows from the proof of Klusowski and Tian [2024, Theorem

4.3].

SA-4.6 Proof of Theorem SA-5

Throughout the proof, we abbreviate the honest tree µ̂HON(x) by µ̌(x). Recall (̂ı, ȷ̂) denotes the optimal

splitting index and coordinate for the decision stump. We use (yi,x
⊤
i )Mi=1 to denote DHON,1, which we used

to construct the causal tree. Denote by (̂ı, ȷ̂) the splitting index and coordinate at the Kn-th step.

Use (ỹi, x̃
⊤
i )Ni=1 to denote DHON,2. By Definition SA-2, n ≲ M,N ≲ n. Then

sup
x∈X

|µ̌(x) − µ| ≥ |µ̌(0) − µ|

=

∣
∣
∣
∣

∑N
i=1(ỹi − µ)1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)
∑N

i=1 1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)

∣
∣
∣
∣
.

Since ỹi ⊥⊥ x̃i, condition on ı̂, ȷ̂ and X = (x1, · · · ,xn), X̃ = (x̃1, · · · , x̃n), we have

∑N
i=1(ỹi − µ)1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)
∑N

i=1 1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)

d
=

1

ı̃

ı̃∑

i=1

(yi − µ),

where

ı̃ =

N∑

i=1

1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂).

By Marcinkiewicz–Zygmund inequality, for some positive absolute constant C, we have

E

[∣
∣
∣
1

ı̃

ı̃∑

i=1

(yi − µ)
∣
∣
∣

∣
∣
∣
∣̂
ı, ȷ̂,X,X′

]

≥ CE

[∣
∣
∣
1

ı̃

ı̃∑

i=1

(yi − µ)2

ı̃

∣
∣
∣

1/2
∣
∣
∣
∣̂
ı, ȷ̂,X,X′

]

≥ CE

[
1

ı̃

ı̃∑

i=1

∣
∣
∣
(yi − µ)2

ı̃

∣
∣
∣

1/2
∣
∣
∣
∣̂
ı, ȷ̂,X,X′

]

≥ CE[|yi − µ|]
ı̃1/2

,

where in the second to last line, we have used Jensen’s inequality, and in the last line we have used ı̃ is

measurable with resepect to the σ-algebra generated by ı̂, ȷ̂,X,X′. Then by Paley–Zygmund inequality, for
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any θ ∈ (0, 1),

P

(∣
∣
∣
1

ı̃

ı̃∑

i=1

(yi − µ)
∣
∣
∣ ≥ θ

CE[|yi − µ|]
ı̃1/2

∣
∣
∣
∣̂
ı, ȷ̂,X,X′

)

≥ P

(∣
∣
∣
1

ı̃

ı̃∑

i=1

(yi − µ)
∣
∣
∣ ≥ θE

[∣
∣
∣
1

ı̃

ı̃∑

i=1

(yi − µ)
∣
∣
∣̂ı, ȷ̂,X,X′

]
∣
∣
∣
∣̂
ı, ȷ̂,X,X′

)

≥ (1 − θ)2
E

[

| 1ı̃
∑ı̃

i=1(yi − µ)|
∣
∣
∣̂ı, ȷ̂,X,X′

]2

E

[(
1
ı̃

∑ı̃
i=1(yi − µ)

)2∣
∣
∣̂ı, ȷ̂,X,X′

]

≥ C(1 − θ)2
E[|yi − µ|2]

V[yi]
.

Now we want to obtain a high probability upper bound on ı̃ given ı. Let F be the cummulative distribution

function of xi. Suppose 1 ≤ k ≤ N/2. Then F (x(k)) ∼ Beta(k,M − k + 1). By a Bernstein bound for Beta

variables [Skorski, 2023, Theorem 1], we have for all ϵ > 0,

P(F (x(k)) > k/M + ϵ) ≤ exp
(

− ϵ2

2v + cϵ
3

)

,

where for large enough n,

v =
k(M − k + 1)

(M + 1)2(M + 2)
≤ 2

k

M2
,

c =
2(M − 2k + 1)

M(M + 2)
≤ 2

M
.

Hence with probability at least 1 −M−1,

F (x(k)) ≤ k/M + 2

√

log(M)k

M
+ 3

log(M)

M
.

Condition on X, 1(x̃i ≤ x(k))’s are i.i.d Bernoulli(F (x(k))). Hence condition on X and ı̂, with probability at

least 1 −N−1,

ı̃/N = n−1
N∑

i=1

1(x̃i ≤ x(ı̂)) ≤ F (x(ı̂)) + 2

√

log(N)F (x(ı̂))

N
.

Hence condition on the event ı̂ ≤ M b, we have with probability at least 1 − 2N−1,

ı̃/n ≤ 4M b−1 ≤ Cnb−1,

where C is some constant only depending on lim infn→∞ |DHON,1|/|DHON,2| and lim supn→∞ |DHON,1|/|DHON,2|.
Due to the iterative partitioning, the conclusion for Theorem SA-1 holds not only for decision stump,

but also for the splitting index at arbitrary depth Kn, that is, for any b ∈ (0, 1), we have

lim inf
M→∞

P(̂ı ≤ M b) ≥ b

2e
.
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Hence we have

P

(

|µ̂(0) − µ| ≥ θ
CE[|yi − µ|]

Cnb/2

)

≥
∑

k≤Mb

P

(

|µ̂(0) − µ| ≥ θ
CE[|yi − µ|]

Cnb/2

∣
∣
∣
∣̂
ı = k

)

P(̂ı = k)

≥
∑

k≤Mb

P

(

|µ̂(0) − µ| ≥ θ
CE[|yi − µ|]

ı̃1/2

∣
∣
∣
∣̂
ı = k

)

P(̂ı = k) − 2n−1

≥ C(1 − θ)2
E[|yi − µ|2]

V[yi]

b

2e
− 2n−1.

This proves the conclusion.

SA-4.7 Proof of Theorem SA-6

For notational simplicity, we use T to denote the data-driven decision tree. We will follow the proof strategy

from Klusowski and Tian [2024, Theorem 4.3] condition on DT. Denote by G0 the class of constant functions.

Decompose ∥µ̂(T) − µ∥2 = E1 + E2, where

E1 = ∥µ̂(T) − µ∥2 − 2(∥y − µ̂(T)∥2Dµ
− ∥y − µ∥2Dµ

) − α− β,

and

E2 = 2(∥y − µ̂(T)∥2Dµ
− ∥y − µ∥2Dµ

) + α + β.

Denote the partition for T by P. Since P is independent to Dµ, the bound (E.27) from Klusowski and Tian

[2024] does not apply automatically. Instead, we consider G0 as the reference class. Given the partitions of

T, the values of leaf nodes are obtained by least-square projection using Dµ. This immediately implies

∥y − µ̂(T)∥2Dµ
≤ ∥y − ȳ∥2Dµ

≤ ∥y − g∥2Dµ
,

for any constant function g ∈ G0. Hence for all g ∈ G0,

EDµ
[E2|DT] ≤ 2EDµ

[∥y − g∥2Dµ
− ∥y − µ∥2Dµ

|DT] + α + β

= 2∥g − µ∥2 + α + β.

For the term E1, we first assume |yi| ≤ U . Observe that condition on DT, µ̂(T) is still a member of the class

GnT
[P], which is the collection of all piecewise constant functions (bounded by U) on the partition P. Since

for any ε ∈ (0, 1),

N(εU,GnT
[P], ∥·∥PX

nµ ) ≤ N(εU,GnT
[P], ∥·∥∞) ≤

(
2

ε

)2K

,

we can still use Györfi et al. [2002, Theorem 11.4] and the same argument from Equation (B.30) to (B.33)

in Klusowski and Tian [2024] to get

PDµ
(E1 ≥ 0 | DT) ≤ 14

(
2U2

β

)2K

exp

(

− αnT

2568U4

)

.
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The result then follows choosing α ≍ U42K log(n)
n and β ≍ U2

n , and truncation argument over the sub-

exponential εi’s.

SA-4.8 Proof of Theorem SA-7

In this section, we prove Theorem SA-7. First, we define some notation related to the tree construction

which will be used in the proofs. Let ñk be the number of observations in the node containing x = 0 at

depth k, ı̃k be the CART split index of this node, and ȷ̃k be the CART split coordinate of this node, with

ñ0 = n and ı̃0 = ı̂ (recall that ı̂ is the split index for the decision stump (SA-5)). Then, the left-most cell at

the k-th level can be expressed as t ∩ [0, xπȷ̃,ȷ̃(ı̃k−1)] and ñk = ı̃k−1.

Lemma SA-38. There exist δ ∈ (0, 1), c > 1, and a positive integer M such that for any depth k ≥ 1 and

m ≥ M , we have P(ñk ≤ m) ≥ (1 − δ) · P(ñk−1 ≤ m) + δ · P(ñk−1 ≤ mc).

Proof. Observe that if m is a positive integer, then ı̃k−1 | ñk−1 = m has the same distribution as ı̃0 | ñ0 = m,

because of the honest tree construction and Assumption SA–1. Therefore, we can apply (SA-6) to obtain

P
(
ma ≤ ı̃k−1 ≤ mb | ñk−1 = m

)
≥ δ > 0, (SA-26)

for some δ > 0 and sufficiently large m. Hence, by (SA-26), we have for m sufficiently large,

P
(
ñk ≤ m | m < ñk−1 ≤ m1/b

)

≥ min
m<i≤m1/b

P
(
ia ≤ ı̃k−1 ≤ ib | ñk−1 = i

)
P
(
ñk ≤ m | ia ≤ ı̃k−1 ≤ ib

)

≥ δ min
m<i≤m1/b

P
(
ñk ≤ m | ia ≤ ı̃k−1 ≤ ib

)

≥ δ min
ma<i≤m

P
(
ñk ≤ ı̃k−1 | ı̃k−1 = i

)

= δ.

(SA-27)

Now, taking c = 1/b, note that (SA-27) implies Lemma SA-38 since, for m sufficiently large, we have

P(ñk ≤ m) = P(ñk ≤ m, ñk−1 > mc) + P(ñk ≤ m, ñk−1 ≤ mc) (SA-28)

≥ P(ñk ≤ m, ñk−1 ≤ mc) (SA-29)

= P(ñk ≤ m, ñk−1 ≤ m) + P(ñk ≤ m, m < ñk−1 ≤ mc) (SA-30)

≥ P(ñk−1 ≤ m) + δ · P(m < ñk−1 ≤ mc) (SA-31)

= (1 − δ) · P(ñk−1 ≤ m) + δ · P(ñk−1 ≤ mc).

Next, we use Lemma SA-38 to finish the proof of Theorem SA-7. The main idea is to establish that the

terminal nodes in a shallow tree will be small with constant probability.

Proof of Theorem SA-7. For notational simplicity, we denote µ̂X(x;K) by µ̃(TK)(x).

Define nℓ = N (1/c)ℓ , where N = n/Kn. We will show by induction that for any k ≥ 0 and ℓ ≥ 1 such

that nℓ ≥ M ,

P(ñk ≤ nℓ) ≥
k∑

k′=ℓ

(
k′ − 1

ℓ− 1

)

(1 − δ)k
′−ℓδℓ.. (SA-32)
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The base case of k = 0 is trivial since ñ0 = N . Now, assume that for some fixed k ≥ 1 and any ℓ′ ≥ 1 such

that nℓ′ ≥ M , we have

P(ñk−1 ≤ nℓ′) ≥
k−1∑

k′=ℓ′

(
k′ − 1

ℓ′ − 1

)

(1 − δ)k
′−ℓ′δℓ

′

. (SA-33)

If ℓ ≥ 2, then substituting our induction hypothesis (SA-33) with ℓ′ = ℓ and ℓ′ = ℓ− 1 into Lemma SA-38,

we get that

P(ñk ≤ nℓ) ≥ (1 − δ)
k−1∑

k′=ℓ

(
k′ − 1

ℓ− 1

)

(1 − δ)k
′−ℓδℓ + δ

k−1∑

k′=ℓ−1

(
k′ − 1

ℓ− 2

)

(1 − δ)k
′−ℓ+1δℓ−1 (SA-34)

=

k∑

k′=ℓ

(
k′ − 1

ℓ− 1

)

(1 − δ)k
′−ℓδℓ, (SA-35)

where we used Pascal’s identity. This completes the inductive proof of (SA-32).

Let X ∼ NB(L, δ), i.e., the number of independent trials, each occurring with probability δ, until L

successes. Choose

L = ⌈logc logc(N) − logc logc(M) − 1⌉ ≍ log log(N), nL = N (1/c)L ∈ [M,M c].

By (SA-32) and Markov’s inequality applied to the tail probability of X, we have that

P(ñK ≤ nL) ≥
K∑

k′=L

(
k′ − 1

L− 1

)

(1 − δ)k
′−LδL

= 1 − P(X ≥ K + 1)

≥ 1 − E[X]

K + 1

= 1 − L

δ(K + 1)

≥ 1

2
,

(SA-36)

as long as K ≥ 2L/δ ≳ log log(N). By the Paley-Zygmund inequality [Petrov, 2007] and the fact that

Var(µ̃(TK)(0)) = E[1/ñK ] ≤ 1, we have

P

(

|µ̃(TK)(0)| > E[|µ̃(TK)(0)|]
2

)

≥ (E[|µ̃(TK)(0)|])2
4Var(µ̃(TK)(0))

≥ (E[|µ̃(TK)(0)|])2
4

. (SA-37)

By the honest construction of the tree and (SA-36), we have the lower bound

E[|µ̃(TK)(0)|] =

n∑

k=1

E

[∣
∣
∣
∣

1

k

k∑

i=1

ỹi

∣
∣
∣
∣

]

P(ñK = k)

≥ min
k=1,2,...,⌈nL⌉

E

[∣
∣
∣
∣

1

k

k∑

i=1

ỹi

∣
∣
∣
∣

]

P(ñK ≤ ⌈nL⌉)

≥ 1

2
min

k=1,2,...,⌈nL⌉
E

[∣
∣
∣
∣

1

k

k∑

i=1

ỹi

∣
∣
∣
∣

]

.

(SA-38)
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Since a sum of independent random variables is almost surely constant if and only if the individual random

variables are almost surely constant, it follows that the last expression in (SA-38) is bounded away from

zero. Returning to (SA-37) completes the proof.

SA-4.9 Proof of Theorem SA-8

For simplicity, denote µ̂X(x) by µ̃(TK)(x), and N = n/(K + 1) denotes the sample size for each folds in the

X sample splitting scheme.

Let t1, t2, · · · , t2K denote the 2K leaf nodes in the decision tree, (if a node cannot be further refined,

we duplicate the split indices and values at the next level). And let N1, N2, · · · , N2K and m1,m2, · · · ,m2K

denote the number of observations and the Lebesgue measure of the 2K leaf nodes, respectively. Note that

N⃗ = (N1, · · · , N2K ) are independent of the ỹi data by the honest condition and the xi data per Assumption

SA–1.

Claim: Condition on N⃗ , mk ∼ Beta(Nk, N −Nk + 1)

Thus, the IMSE can be bounded as follows:

E

[
∫

X

(µ̃(TK)(x))2Px(dx)

]

=

2K∑

k=1

E

[

mk

(

1(Nk > 0)

Nk

n∑

i=1

ỹi1(xi ∈ tk)

)2]

=

2K∑

k=1

E

[

mk

Nk
1(Nk > 0)

]

σ2

≤
2K∑

k=1

E

[

1

N + 1

]

σ2

≤ 2K+1

N + 1
σ2.

Proof of Claim: We show by induction. Base Case: K = 1. For decision stumps, for some coordinate

j ∈ [p], we have m1 = x(N1), and m2 = x(N1+N2) − x(N1) = 1 − x(N1). By Assumption SA–1, the order

statistics xj,(i) is independent to N⃗ . Hence mk ∼ Beta(Nk, N −Nk + 1), k = 1, 2.

Induction Step: K ≥ 2. Let t
prev
l be a (K − 1)-th level node, we annonate all relevant depth K − 1 infor-

mation with superscript prev. We already know condition on Nprev
1 , · · · , Nprev

2K−1 , mprev
l ∼ Beta(Nprev

l , N −
Nprev

l + 1). Suppose t
prev
l is divided into t2l, t2l+1 with Lebesgue measure and number of observations

given by m2l,m2l+1 and N2l, N2l+1, respectively, and the split is based on coordinate j ∈ [p]. By As-

sumption SA–1, condition on xi ∈ t
prev
l , xi ∼ Uniform(tprevl ). Hence condition on Nprev

l , N2l and mprev
l ,

we have m2l/m
prev
l ∼ Beta(Nprev

l , N − Nprev
l + 1). Hence condition on N⃗ = (N1, · · · , N2K ), we have

mk ∼ Beta(Nk, N −Nk + 1), 1 ≤ k ≤ 2K . Induction then concludes the proof.

SA-4.10 Proof of Corollary SA-9

This is an immediate corollary from Theorem SA-1.

SA-4.11 Proof of Corollary SA-10

This is an immediate corollary from Theorem SA-2.
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SA-4.12 Proof of Corollary SA-11

This is an immediate corollary from Theorem SA-3.

SA-4.13 Proof of Corollary SA-12

This is an immediate corollary from Theorem SA-4.

SA-4.14 Proof of Corollary SA-13

This is an immediate corollary from Theorem SA-5.

SA-4.15 Proof of Corollary SA-14

This is an immediate corollary from Theorem SA-6.

SA-4.16 Proof of Corollary SA-15

This is an immediate corollary from Theorem SA-7.

SA-4.17 Proof of Corollary SA-16

This is an immediate corollary from Theorem SA-8.

SA-4.18 Proof of Lemma SA-17

Since the number of coordinate p is fixed, we can use a union bound over the approximation error for the

p coordinates. Hence w.lo.g. we can assume p = 1 and drop the second index on the coordinate ℓ from

I DIM(k, ℓ) and Ī IPW(k, ℓ) everywhere. And throughout, we assume the data is already sorted so that

x1 ≤ x2 ≤ · · · ≤ xn.

Expand the square, we have for any k = 1, 2, · · · , n,

I
DIM(k) − Ī

IPW(k) =
k(n− k)

n

(

τ̂ DIMtL (k) − τ̂ DIMtR (k) + τ̄ IPWtL (k) − τ̄ IPWtR (k)
)

︸ ︷︷ ︸

=:R1(k)

(

τ̂ DIMtL (k) − τ̂ DIMtR (k) − τ̄ IPWtL (k) + τ̄ IPWtR (k)
)

︸ ︷︷ ︸

=:R2(k)

.

(SA-39)

We focus on the case where 1 ≤ k ≤ n
2 , the other case where n

2 < k ≤ n follow from symmetry. Consider

the term R2(k). First, consider the term corresponding to i from 1 to k. The other term corresponding to i

from k + 1 to n can be handled similarly. Breaking down yi(1) = µ1(xi) + εi(1) and yi(0) = µ0(xi) + εi(0),
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we have

|R2(k)| =

∣
∣
∣
∣

∑k
i=1 diyi(1)
∑k

i=1 di
− 1

k

k∑

i=1

di
ξ
εi(1) −

∑k
i=1(1 − di)yi(0)
∑k

i=1(1 − di)
+

1

k

k∑

i=1

1 − di
1 − ξ

εi(0) + counterpart for tR

∣
∣
∣
∣

≤
∣
∣
∣
∣

∑k
i=1 diεi(1)
∑k

i=1 di

∣
∣
∣
∣
·
∣
∣
∣
∣

1

k

k∑

i=1

(
di
ξ

− 1)

∣
∣
∣
∣

+

∣
∣
∣
∣

∑k
i=1(1 − di)εi(0)
∑k

i=1(1 − di)

∣
∣
∣
∣
·
∣
∣
∣
∣

1

k

k∑

i=1

(
1 − di
1 − ξ

− 1)

∣
∣
∣
∣

+

∣
∣
∣
∣

∑n
i=k+1 diεi(1)
∑n

i=k+1 di

∣
∣
∣
∣
·
∣
∣
∣
∣

1

n− k

n∑

i=k+1

(
di
ξ

− 1)

∣
∣
∣
∣

+

∣
∣
∣
∣

∑n
i=k+1(1 − di)εi(0)
∑n

i=k+1(1 − di)

∣
∣
∣
∣
·
∣
∣
∣
∣

1

n− k

n∑

i=k+1

(
1 − di
1 − ξ

− 1)

∣
∣
∣
∣

+

∣
∣
∣
∣

∑k
i=1 diµ1(xi)
∑k

i=1 di
−
∑k

i=1(1 − di)µ0(xi)
∑k

i=1(1 − di)
−
∑n

i=k+1 diµ1(xi)
∑n

i=k+1 di
+

∑n
i=k+1(1 − di)µ0(xi)
∑n

i=k+1(1 − di)

∣
∣
∣
∣
. (SA-40)

Notice that Assumption SA–2 (ii) implies that the last term is zero. Since xi ⊥⊥ di, even though the data

is ordered according to xi, {di/ξ − 1 : 1 ≤ i ≤ n} are i.i.d mean-zero with bounded second moment. By

Theorem A.4.1 in Csörgö and Horváth [1997],

max
rn≤k<n−rn

√
k ·
∣
∣
∣
∣

1

k

k∑

i=1

(
di
ξ

− 1)

∣
∣
∣
∣

= OP(
√

log log(n)).

Take bi =
∑

1≤ℓ≤i dℓ. By Equation (8) from Shorack and Smythe [1976], for any λ > 0,

P

(

max
rn≤k≤n−rn

∣
∣
∣

∑k
i=1 diεi(1)
∑k

i=1 di

∣
∣
∣ ≥ λ

∣
∣
∣
∣
(di)1≤i≤n

)

≤ 16
∑

rn≤i≤n−rn

diV[εi(1)]

b2i
λ−2

≤ 16
∑

i≥brn

1

i2
λ−2

V[εi(1)]

≤ 8

3
π2λ−2

V[εi(1)]
1

brn
,

The assumption that lim infn→∞ ρn log log(n) = ∞ implies lim infn→∞ rn = ∞. Hence

(brn)−1 = r−1
n

(

ξ +
1

rn

rn∑

i=1

(di − ξ)
)−1

= OP(r−1
n ).

Hence uncondition on (di)1≤i≤n, and we have

max
rn≤k≤n−rn

∣
∣
∣

∑k
i=1 diεi(1)
∑k

i=1 di

∣
∣
∣ = OP(r−1/2

n ). (SA-41)

Hence

max
rn≤k<n−rn

√
k ·
∣
∣
∣
∣

∑k
i=1 diεi(1)
∑k

i=1 di

∣
∣
∣
∣
·
∣
∣
∣
∣

1

k

k∑

i=1

(
di
ξ

− 1)

∣
∣
∣
∣

= OP

(
√

log log(n)

rn

)

.

By similar arguments, we can show the same bound holds for other terms in the first two lines of Equa-
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tion (SA-40). Hence

max
rn≤k<n−rn

√
k|R2(k)| = OP

(
√

log log(n)

rn

)

.

Under the assumption that µ0 ≡ c0 and µ1 ≡ c1, we have

R1(k) =

∣
∣
∣
∣

∑k
i=1 diyi
∑k

i=1 di
+

1

k

k∑

i=1

di
ξ
εi(1) −

∑k
i=1(1 − di)yi
∑k

i=1(1 − di)
− 1

k

k∑

i=1

1 − di
1 − ξ

εi(0) + counterpart for tR

∣
∣
∣
∣

=

∣
∣
∣
∣

∑k
i=1 diεi(1)
∑k

i=1 di
+

1

k

k∑

i=1

di
ξ
εi(1) −

∑k
i=1(1 − di)εi(0)
∑k

i=1(1 − di)
− 1

k

k∑

i=1

1 − di
1 − ξ

εi(0) + counterpart for tR

∣
∣
∣
∣
.

By Equation (SA-41) and Theorem A.4.1 in Csörgö and Horváth [1997] for the terms k−1
∑k

i=1 ξ
−1diεi(1),

k−1
∑k

i=1(1 − ξ)−1(1 − di)εi(0) and the counterparts for tR, we have

max
rn≤k<n−rn

√
k|R1(k)| = OP

(
√

log log(n)

)

.

Putting together the parts for R1 and R2, we have

max
rn≤k<n−rn

|I DIM(k) − Ī
IPW(k)| = OP

(
log log(n)

r
1/2
n

)

.

SA-4.19 Proof of Lemma SA-18

Since the number of coordinates p is fixed, we can use a union bound over the approximation error for the

p coordinates. Hence w.lo.g. we can assume p = 1 and drop the second index on the coordinate ℓ from

I DIM(k, ℓ) and Ī IPW(k, ℓ) everywhere. And throughout, we assume the data is already sorted so that

x1 ≤ x2 ≤ · · · ≤ xn.

For 1 ≤ k ≤ sn and n−sn ≤ k ≤ n, Equations (SA-39) and (SA-40) still hold. W.l.o.g assume 1 ≤ k ≤ sn.

First, we upper bound the IPW terms. Definition of sn and Equation (A.4.3) in Csörgö and Horváth [1997]

imply

max
1≤k≤sn

∣
∣
∣
∣

1√
k

k∑

i=1

di
ξ
εi(1)

∣
∣
∣
∣

+

∣
∣
∣
∣

1√
k

k∑

i=1

1 − di
1 − ξ

εi(0)

∣
∣
∣
∣

= OP(un), (SA-42)

with un =
√

ρn log log(n). Also Equation (A.4.2) in Csörgö and Horváth [1997] imply

max
1≤k≤sn

√
k ·
∣
∣
∣
∣

1

n− k

n∑

i=k+1

di
ξ
εi(1)

∣
∣
∣
∣

+
√
k ·
∣
∣
∣
∣

1

n− k

n∑

i=k+1

1 − di
1 − ξ

εi(0)

∣
∣
∣
∣

= OP(vn), (SA-43)

42



where vn =
√

sn
n−sn

log log(n). Again Equation (A.4.3) from Csörgö and Horváth [1997] imply that

max
1≤k≤sn

∣
∣
∣
∣

1√
k

k∑

i=1

(di
ξ

− 1
)
∣
∣
∣
∣

= OP(un).

Take bi =
∑

1≤ℓ≤i dℓ. By Equation (8) from Shorack and Smythe [1976], for any λ > 0,

P

(

max
1≤k≤sn

∣
∣
∣

∑k
i=1 diεi(1)
∑k

i=1 di

∣
∣
∣ ≥ λ

∣
∣
∣
∣
(di)1≤i≤n

)

≤ 16
∑

1≤i≤sn

diV[εi(1)]

b2i
λ−2

≤ 16
∑

1≤i≤sn

1

i2
λ−2

V[εi(1)]

≤ 8

3
π2λ−2

V[εi(1)],

Hence uncondition on (di)1≤i≤n, and we have

max
1≤k≤sn

∣
∣
∣

∑k
i=1 diεi(1)
∑k

i=1 di

∣
∣
∣ = OP(1).

It follows that

max
1≤k≤sn

√
k ·
∣
∣
∣
∣

∑k
i=1 diεi(1)
∑k

i=1 di
− 1

k

k∑

i=1

di
ξ
εi(1)

∣
∣
∣
∣

= max
1≤k≤sn

∣
∣
∣
∣

1√
k

k∑

i=1

(di
ξ

− 1
)

·
∑k

i=1 diεi(1)
∑k

i=1 di

∣
∣
∣
∣

= OP(un). (SA-44)

Putting together the above equation with Equation (SA-42) and using a similar argument for the control

group,

max
1≤k≤sn

√
k ·
∣
∣
∣
∣

∑k
i=1 diεi(1)
∑k

i=1 di

∣
∣
∣
∣

+
√
k ·
∣
∣
∣
∣

∑k
i=1(1 − di)εi(0)
∑k

i=1(1 − di)

∣
∣
∣
∣

= OP(un). (SA-45)

Apply Equation (A.4.2) in Csörgö and Horváth [1997] for the partial sum with at least n − sn terms and

using max1≤k≤sn | 1
n−k

∑n
i=k+1(di − ξ)| = oP(1), we have

max
1≤k≤sn

√
k ·
∣
∣
∣
∣

∑n
i=k+1 diεi(1)
∑n

i=k+1 di

∣
∣
∣
∣

= max
1≤k≤sn

√
k ·
∣
∣
∣
∣

n− k
∑n

i=k+1 di

∣
∣
∣
∣
·
∣
∣
∣
∣

1

n− k

n∑

i=k+1

diεi(1)

∣
∣
∣
∣

≤
√

sn
n− sn

(

ξ + min
1≤k≤sn

1

n− k

n∑

i=k+1

(di − ξ)

)−1

· max
1≤k≤sn

∣
∣
∣
∣

1√
n− k

n∑

i=k+1

diεi(1)

∣
∣
∣
∣

= OP(vn). (SA-46)

The same bound hold for max1≤k≤sn

√
k · |

∑n
i=k+1(1−di)εi(1)∑n

i=k+1(1−di)
| by a similar argument. Putting together Equa-

tions (SA-42),(SA-43), (SA-45), (SA-46), we have

max
ℓ=1,2

max
1≤k≤sn

√
k|Rℓ(k)| = OP(un + vn).

From the decomposition in Equation (SA-40) and the symmetry for k ∈ [1, sn] and k ∈ [n − sn, n], the

conclusion follows.
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SA-4.20 Proof of Theorem SA-19

We break down the proofs into two steps.

Step 1: Approximation of reg-score by ipw-score

Let 0 < a < b < 1. Let ρn be a sequence of real numbers taking values in (0, 1) to be determined, and

take sn = exp((log n)ρn). Then for large enough n, we have sn ≤ na ≤ nb ≤ n − sn. Consider the event

An := {∃ℓ ∈ [p] : maxk∈[n] I
DIM(k, ℓ) > maxk/∈[sn,n−sn] I

DIM(k, ℓ)}. By Equation (A.4.18) from Csörgö and

Horváth [1997],

max
1≤k≤sn,n−sn≤k≤n

√

Ī IPW(k, ℓ) = OP(
√

ρn log log(n)).

Then controlling the difference between Ī IPW(k, ℓ) and I DIM(k, ℓ) by Lemma SA-18,

max
1≤k≤sn,n−sn≤k≤n

I
DIM(k, ℓ) = OP

(

ρn log log(n) +
sn

n− sn
log log(n)

)

(SA-47)

By Lemma SA-17 with the choice rn = sn,

max
sn<k<n−sn

√

I DIM(k, ℓ) = max
sn<k<n−sn

√

Ī IPW(k, ℓ) + OP

(
log log(n)1/2

s
1/4
n

)

≥ max
1≤k≤n

√

Ī IPW(k, ℓ) − max
1≤k≤sn,n−sn≤k≤n

√

Ī IPW(k, ℓ) + OP

(
log log(n)1/2

s
1/4
n

)

.

Equation (A.4.20) in Csörgö and Horváth [1997] imply that (2 log log(n))−1/2 max1≤k≤n

√

Ī IPW(k, ℓ) =

1 + oP(1) and (2 log log(n))−1/2 max1≤k≤sn,n−sn≤k≤n

√

Ī IPW(k, ℓ) = ρn(1 + oP(1)). Hence

max
1≤k≤n

√

Ī IPW(k, ℓ) ≥
√

2 log log(n) + OP(
√

ρn log log(n)) + OP

(
log log(n)1/2

s
1/4
n

)

(SA-48)

Choose log log log log(n)/ log log(n) ≪ ρn ≪ 1, then by Equation (SA-47) and (SA-48),

max
1≤k≤sn,n−sn≤k≤n

I
DIM(k, ℓ) = oP(log log(n)), and max

sn≤k≤n−sn
I

DIM(k, ℓ) =
√

2 log log(n)(1 + oP(1)).

Hence

max
1≤k≤sn,n−sn≤k≤n

I
DIM(k, ℓ) = oP

(

max
sn≤k≤n−sn

I
DIM(k, ℓ)

)

, ℓ ∈ [p],

which by a union bound implies

lim sup
n→∞

P(An) = 0.
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Observe that on the event Ac
n, the argmax for I DIM should be inside [sn, n− sn]. Hence

P

(

∃ℓ ∈ [p] : max
k

I
DIM(k, ℓ) > max

k,j ̸=ℓ
I

DIM(k, j), max
k

I
DIM(k, ℓ) > max

k/∈[na,nb]
I

DIM(k, ℓ)
)

≥ P

(

∃ℓ ∈ [p] : max
k

I
DIM(k, ℓ) > max

k,j ̸=ℓ
I

DIM(k, j), max
k

I
DIM(k, ℓ) > max

k/∈[na,nb]
I

DIM(k, ℓ) and Ac
n

)

− P(An)

≥ P

(

∃ℓ ∈ [p] : max
k∈[sn,n−sn]

I
DIM(k, ℓ) > max

j ̸=ℓ
k∈[sn,n−sn]

I
DIM(k, j),

max
k∈[sn,n−sn]

I
DIM(k, ℓ) > max

k/∈[na,nb],k∈[sn,n−sn]
I

DIM(k, ℓ)
)

− 2P(An).

Now we focus on the first term. By symmetry in the p coordinates,

P

(

∃ℓ ∈ [p] : max
k∈[sn,n−sn]

I
DIM(k, ℓ) > max

j ̸=ℓ
k∈[sn,n−sn]

I
DIM(k, j), max

k∈[sn,n−sn]
I

DIM(k, ℓ) > max
k/∈[na,nb]

k∈[sn,n−sn]

I
DIM(k, ℓ)

)

= pP
(

max
k∈[sn,n−sn]

I
DIM(k, 1) > max

j ̸=1
k∈[sn,n−sn]

I
DIM(k, j), max

k∈[sn,n−sn]
I

DIM(k, 1) > max
k/∈[na,nb]

k∈[sn,n−sn]

I
DIM(k, 1)

)

≥ p sup
z∈R

P

(

max
j ̸=1

k∈[sn,n−sn]

I
DIM(k, j) < z, max

k∈[sn,n−sn]
I

DIM(k, 1) > z > max
k/∈[na,nb]

k∈[sn,n−sn]

I
DIM(k, 1)

)

≥ p sup
z∈R

P

(

max
j ̸=1

k∈[sn,n−sn]

I
DIM(k, j) < z, max

k/∈[na,nb]
k∈[sn,n−sn]

I
DIM(k, 1) < z

)

− pP
(

max
j ̸=1

k∈[sn,n−sn]

I
DIM(k, j) < z, max

k∈[sn,n−sn]
I

DIM(k, 1) > z
)

.

Then using the fact that Ī IPW(k, ℓ) approximates I DIM(k, ℓ) from Lemma SA-17, we have

P

(

∃ℓ ∈ [p] : max
k∈[sn,n−sn]

I
DIM(k, ℓ) > max

j ̸=ℓ
k∈[sn,n−sn]

I
DIM(k, j), max

k∈[sn,n−sn]
I

DIM(k, ℓ) > max
k/∈[na,nb]

k∈[sn,n−sn]

I
DIM(k, ℓ)

)

≥ p sup
z∈R

P

(

max
j ̸=1

k∈[sn,n−sn]

Ī
IPW(k, j) < z − vn, max

k/∈[na,nb]
k∈[sn,n−sn]

Ī
IPW(k, 1) < z − vn

)

− pP
(

max
j ̸=1

k∈[sn,n−sn]

Ī
IPW(k, j) < z + vn, max

k∈[sn,n−sn]
Ī

IPW(k, 1) > z − vn

)

,

where vn = OP(log log(n)s
−1/2
n ).

Step 2: Ipw-score approximation by Gaussian approximation

Observe that the choice sn = exp(log(n)ρn) for log log log log(n)/ log log(n) ≪ ρn ≪ 1 implies υn =

45



oP((log log(n))−1/2). Let ϵ > 0. Then

sup
z∈R

P

(

max
j ̸=1

k∈[sn,n−sn]

Ī
IPW(k, j) < z − vn, max

k/∈[na,nb]
k∈[sn,n−sn]

Ī
IPW(k, 1) < z − vn

)

− P

(

max
j ̸=1

k∈[sn,n−sn]

Ī
IPW(k, j) < z + vn, max

k∈[sn,n−sn]
Ī

IPW(k, 1) > z − vn

)

≥ sup
z∈R

P

(

max
j ̸=1

k∈[sn,n−sn]

Ī
IPW(k, j) < z − ϵ

√

2 log log(n)
, max

k/∈[na,nb]
k∈[sn,n−sn]

Ī
IPW(k, 1) < z − ϵ

√

2 log log(n)

)

− P

(

max
j ̸=1

k∈[sn,n−sn]

Ī
IPW(k, j) < z +

ϵ
√

2 log log(n)
, max
k∈[sn,n−sn]

Ī
IPW(k, 1) > z − ϵ

√

2 log log(n)

)

− P(|vn| >
ϵ√

2 log log n
).

Choosing zn(u) = 2 log log(n)+1/2 log log log(n)+u−1/2 log(π)√
2 log log(n)

, and from the proof of Theorem SA-1, we have

lim inf
n→∞

sup
z∈R

P

(

max
j ̸=1

k∈[sn,n−sn]

Ī
IPW(k, j) < z − ϵ√

2 log log n
, max

k/∈[na,nb]
k∈[sn,n−sn]

Ī
IPW(k, 1) < z − ϵ√

2 log log n

)

− P

(

max
j ̸=1

k∈[sn,n−sn]

Ī
IPW(k, j) < z +

ϵ√
2 log log n

, max
k∈[sn,n−sn]

Ī
IPW(k, 1) > z − ϵ√

2 log log n

)

− P(|vn| >
ϵ√

2 log log n
)

≥ lim inf
n→∞

sup
u∈R

P

(

max
j ̸=1

k∈[sn,n−sn]

Ī
IPW(k, j) < zn(u) − ϵ√

2 log log n
, max

k/∈[na,nb]
k∈[sn,n−sn]

Ī
IPW(k, 1) < zn(u) − ϵ√

2 log log n

)

− P

(

max
j ̸=1

k∈[sn,n−sn]

Ī
IPW(k, j) < zn(u) +

ϵ√
2 log log n

, max
k∈[sn,n−sn]

Ī
IPW(k, 1) > zn(u) − ϵ√

2 log log n

)

− P(|vn| >
ϵ√

2 log log n
),

≥ lim inf
n→∞

sup
u∈R

P

(

max
k∈[sn,n−sn]

Ī
IPW(k, 1) < zn(u) − ϵ√

2 log log n

)p−1

P

(

max
k/∈[na,nb]

k∈[sn,n−sn]

Ī
IPW(k, 1) < zn(u) − ϵ√

2 log log n

)

− P

(

max
j ̸=1

k∈[sn,n−sn]

Ī
IPW(k, 1) < zn(u) +

ϵ√
2 log log n

)p−1

P

(

max
k∈[sn,n−sn]

Ī
IPW(k, 1) > zn(u) − ϵ√

2 log log n

)

≥ sup
u∈R

exp
(

− 2(p− 1)e−(u−ϵ−log(2))
)

exp
(

− 2e−(u−ϵ−log(2−(b−a)))
)

− exp
(

− 2(p− 1)e−(u+ϵ−log(2))
)

exp
(

− 2e−(u−ϵ−log(2))
)

.

Now let ϵ ↓ 0, and then all previous steps together implies

lim inf
n→∞

P

(

∃ℓ ∈ [p] : max
k

I
DIM(k, ℓ) > max

k,j ̸=ℓ
I

DIM(k, j), max
k

I
DIM(k, ℓ) > max

k/∈[na,nb]
I

DIM(k, ℓ)
)

≥ sup
u∈R

exp
(

− 2(p− 1)e−(u−log(2))
)(

exp
(

− 2e−(u−log(2−(b−a)))
)

− exp
(

− 2e−(u−log(2))
))

≥ b− a

2e
.
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SA-4.21 Proof of Theorem SA-20

The proofs follow the essentially same logic as the proof for Theorem SA-2, with some tricks for the random

numerator in
∑

1≤i≤k diεi(1)
∑

1≤i≤k di
.

Part 1: Inconsistency for Uniform Estimation Rates

Denote the optimal index for splitting based on the ℓ’s coordinate by

ı̂DIM,ℓ = arg max
k∈[n]

Ī
DIM(k, ℓ), ℓ ∈ [p].

For notational simplicity, denote

τ̄ DIML (k, ℓ) = τ DIML (k, ℓ) − τ =

∑

1≤i≤k dπℓ(i)επℓ(i)(1)
∑

1≤i≤k dπℓ(i)
−
∑

1≤i≤k(1 − dπℓ(i))επℓ(i)(0)
∑

1≤i≤k(1 − dπℓ(i))
,

τ̄ DIML (ℓ) = τ̄ DIML (̂ıDIM,ℓ, ℓ),

τ̄ DIMR (k, ℓ) = τ DIMR (k, ℓ) − τ =

∑

k<i≤n dπℓ(i)επℓ(i)(1)
∑

k<i≤n dπℓ(i)
−
∑

k<i≤n(1 − dπℓ(i))επℓ(i)(0)
∑

k<i≤n(1 − dπℓ(i))
,

τ̄ DIMR (ℓ) = τ̄ DIMR (̂ıDIM,ℓ, ℓ),

and consider the event

Imblce
DIM

ℓ = {max
k

Ī
DIM(k, ℓ) > max

k,j ̸=ℓ
Ī

DIM(k, j), max
k

Ī
DIM(k, ℓ) > max

k/∈[nb,n−nb]
Ī

DIM(k, ℓ)}, ℓ ∈ [p].

Since we assume µ0 ≡ c0 and µ1 ≡ c1 with c1 − c0 = τ , we have on Imblce
DIM

ℓ ∩ {ι̂DIMℓ ≤ n/2},

sup
x∈X

|τ̂(x) − τ |2 ≥ τ̄ DIML (ℓ)2

≥ 1

min{ı̂DIM,ℓ, n− ı̂DIM,ℓ}

(

ı̂DIM,ℓτ̄
DIM

L (ℓ)2 + (n− ı̂DIM,ℓ)τ̄
DIM

R (ℓ)2 − (n− ı̂DIM,ℓ)τ̄
DIM

R (ℓ)21(̂ıDIM,ℓ ≤ n/2)

)

.

(SA-49)

Take τ̄ DIM =
ı̂DIM,ℓ

n τ̄ DIML +
n−ı̂DIM,ℓ

n τ̄ DIMR . Then

ı̂DIM,ℓτ̄
DIM

L (ℓ)2 + (n− ı̂DIM,ℓ)τ̄
DIM

R (ℓ)2 ≥ ı̂DIM,ℓτ̄
DIM

L (ℓ)2 + (n− ı̂DIM,ℓ)τ̄
DIM

R (ℓ)2 − nτ̄ DIM

=
ı̂DIM,ℓ(n− ı̂DIM,ℓ)

n

(

τ̄ DIML − τ̄ DIMR

)2

By Lemma SA-17 and Lemma SA-18 with rn = sn = exp((log n)ρn) for log log log log(n)/ log log(n) ≪ ρn ≪
1,

ı̂DIM,ℓ(n− ı̂DIM,ℓ)

n

(

τ̄ DIML − τ̄ DIMR

)2

=
ι̂ipw(n− ι̂ipw)

n

(

τ̄ IPWL − τ̄ IPWR

)2

+ oP(log log(n))

= max
1≤k≤n

Ī
IPW(k) + oP(log log n).
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By Theorem A.4.1 in Csörgö and Horváth [1997], max1≤k≤n Ī IPW(k) = 2 log log(n)(1 + oP(1)). Moreover,

ı̂DIM,ℓτ̄
DIM

L (ℓ)21(̂ıDIM,ℓ > n/2) ≤ max
k>n/2

k ·
(∑

1≤i≤k dπℓ(i)επℓ(i)(1)
∑

1≤i≤k dπℓ(i)
−
∑

1≤i≤k(1 − dπℓ(i))επℓ(i)(0)
∑

1≤i≤k(1 − dπℓ(i))

)2

≤ max
k>n/2

2k ·
(∑

1≤i≤k dπℓ(i)επℓ(i)(1)
∑

1≤i≤k dπℓ(i)

)2

+ 2k ·
(∑

1≤i≤k(1 − dπℓ(i))επℓ(i)(0)
∑

1≤i≤k(1 − dπℓ(i))

)2

.

For simplicity in showing the upper bound for ı̂DIM,ℓτ̄
DIM

L (ℓ)21(̂ıDIM,ℓ > n/2), we assume π is the identity

permulation. Take bi =
∑

1≤j≤i dj . By Equation (8) from Shorack and Smythe [1976], for any λ > 0,

P

(

max
k>n/2

∣
∣
∣

∑k
i=1 diεi(1)
∑k

i=1 di

∣
∣
∣ ≥ λ

∣
∣
∣
∣
(di)1≤i≤n

)

≤ 16
∑

i>n/2

diV[εi(1)]

b2i
λ−2

≤ 16
∑

i>bn/2

1

i2
λ−2

V[εi(1)]

≤ 8

3
π2λ−2

V[εi(1)]
1

bn/2
,

And since di’s are i.i.d with E[di] = ξ > 0, we have

(bn/2)−1 = (n/2)−1
(

ξ +
2

n

n/2
∑

i=1

(di − ξ)
)−1

= OP(n−1).

Hence uncondition on (di)1≤i≤n, and we have

max
k≥n/2

k ·
(∑k

i=1 diεi(1)
∑k

i=1 di

)2

= OP(1) = oP(log log(n)).

By a similar term for control, and a symmetric argument for the right node,

ı̂DIM,ℓτ̄
DIM

L (ℓ)21(̂ıDIM,ℓ > n/2) + (n− ı̂DIM,ℓ)τ̄
DIM

R (ℓ)21(̂ıDIM,ℓ ≤ n/2) = oP(log log(n)).

Fix ϵ > 0. Consider the events

Aϵ
ℓ =

{

ı̂DIM,ℓτ̄
DIM

L (ℓ)2 + (n− ı̂DIM,ℓ)τ̄
DIM

R (ℓ)2 ≥ (2 − ϵ) log log(n)

}

,

Bϵ
ℓ =

{

ı̂DIM,ℓτ̄
DIM

L (ℓ)21(̂ıDIM,ℓ > n/2) + (n− ı̂DIM,ℓ)τ̄
DIM

R (ℓ)21(̂ıDIM,ℓ ≤ n/2) ≤ 2ϵ log log(n)

}

.

The above arguments show that lim infn→∞ P(Aϵ
ℓ) = lim infn→∞ P(Bϵ

ℓ) = 1. From Theorem SA-19,

P(ImblceDIMℓ ) ≥ b

pe
.

It then follows from a union bound argument that

lim inf
n→∞

P

(

sup
x∈X

|τ̂ NSS
DIM

(x) − τ | ≥ σn−b/2
√

(2 + o(1)) log log(n)

)

≥ b

e
.

Part 2: Inconsistency for Points near the Boundary
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Fix z ∈ X such that zℓ ≤ na−1. Since the order statistics x(na),ℓ = na−1(1 + oP(1)), on the event

na ≤ ı̂DIM,ℓ ≤ nb, if zℓ ≤ (1 + oP(1))na−1, then zℓ ≤ x(na) ≤ x(ı̂DIM,ℓ),ℓ, and on the event ImblceDIMℓ ,

|τ̂ NSS
DIM

(z) − τ |2 = τ̄ DIML (ℓ)2 ≥ 1

ı̂DIM,ℓ

(

ı̂DIM,ℓτ̄
DIM

L (ℓ)2 + (n− ı̂DIM,ℓ)τ̄
DIM

R (ℓ)2 − (n− ı̂DIM,ℓ)τ̄
DIM

R (ℓ)2
)

≥ 1

ı̂DIM,ℓ

(

max
1≤k≤n

kτ̄ DIML (k, ℓ)2 + (n− k)τ̄ DIMR (k, ℓ)2 − max
k≤nb

(n− k)τ̄ DIMR (k, ℓ)2
)

≥ (2 + oP(1)) log log(n)

ı̂DIM,ℓ

≥ (2 + oP(1)) log log(n)

nb
,

where the second to last line is due to a similar argument as in the proof of part 1. By a symmetry argument

for the event {n− nb ≤ ı̂DIM,ℓ ≤ n− na}, we have

lim inf
n→∞

inf
x∈Xn

P

(

|τ̂ NSS
DIM

(x) − τ | ≥ σn−b/2
√

(2 + o(1)) log log(n)
)

≥ b− a

2e
,

where Xn = {x ∈ [0, 1]p : xj = o(1)na−1 or 1 − xj = o(1)na−1 for some j ∈ [p]}, and σ2 = V[diyi(1)
ξ +

(1−di)yi(0)
1−ξ ].

SA-4.22 Proof of Theorem SA-21

Due to the recursive splitting and Theorem SA-19, the optimal split index ı̂DIM at the k-th split (k ≥ 1) also

satisfies

lim inf
n→∞

P
(
ı̂DIM ≤ nb

)
= lim inf

n→∞
P
(
n− nb ≤ ı̂DIM

)
≥ b

2e
.

Hence the same argument as Part 1 in the proof of Theorem SA-20 leads to the result.

SA-4.23 Proof of Theorem SA-22

For notational simplicity, denote τ̂ NSS
DIM

by τ̂ , the data-driven partition DT by P.

Reduction to least square prediction error.

Observe that the leaf nodes value coincide with a least square projection given P: For t ∈ P, we have

τ̂(t) = b̂t, where

ât, b̂t =







arg mina,b

∑n
i=1 1(xi ∈ t)(yi − a− b di)

2 if
∑n

i=1 1(xi ∈ t) > 0,

0, 0 otherwise.

Consider the outcome prediction model based on partition P:

ĝ(x, d) =
∑

t∈P

1(x ∈ t)(ât + b̂td)

= Â(x) + B̂(x) d, (SA-50)
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where

Â(x) =
∑

t∈P

1(x ∈ t)ât, B̂(x) =
∑

t∈P

1(x ∈ t)b̂t.

First, we show that for L2-consistency of treatment effect estimation, it is enough to look at the L2 loss

for outcome prediction. Denote by PX,d the joint distribution of (xi, di). Since we assumed xi and di are

independent, we have PX,d = PX × Pd, where PX and Pd are the marginal distributions of X and d. Given

Assumption SA–2, the target outcome prediction model is

g∗(xi, di) = E[yi|xi, di] = µ + τ di, µ = E[yi(0)], τ = E[yi(1) − yi(0)].

Hence

E[∥ĝ − g∗∥2]

= E

[ ∫

X×{0,1}
(ĝ(x, d) − µ− τx)2dPX,d(x, d)

]

= E

[ ∫

X×{0,1}
(Â(x) + B̂(x)d− µ− τd)2dPX(x) × Pd(d)

]

= E

[ ∫

X×{0,1}
(d (Â(x) + B̂(x) − µ− τ) + (1 − d) (Â(x) − µ))2dPX(x) × Pd(d)

]

= E

[ ∫

X×{0,1}
d (Â(x) + B̂(x) − µ− τ)2 + (1 − d) (Â(x) − µ)2dPX(x) × Pd(d)

]

= E

[

ξ

∫

X

(Â(x) + B̂(x) − µ− τ)2dPX(x) + (1 − ξ)

∫

X

(Â(x) − µ)2dPX(x)

]

= ξE[∥Â + B̂ − µ− τ∥2] + (1 − ξ)E[∥Â− µ∥2]. (SA-51)

It follows that

E[∥τ̂ − τ∥2] = E[∥B̂ − τ∥2] ≤ 4

min{ξ, 1 − ξ}E[∥ĝ − g∗∥2].

Error Bound for Least Square Prediction.

Now, we bound the least square error E[∥ĝ − g∗∥2] following the strategy for [Klusowski and Tian, 2024,

Theorem 4.3]. First, assume |yi(t)| ≤ U , i = 1, 2, · · · , n, t = 0, 1, for some U ≥ 0. Decompose by

∥ĝ − g∗∥2 = E1 + E2,

where

E1 = ∥ĝ − g∗∥2 − 2(∥y − ĝ∥2D − ∥y − g∗∥2D) − α− β,

E2 = 2(∥y − ĝ∥2D − ∥y − g∗∥2D) + α + β.
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The least square representation (SA-50) implies that

∥y − ĝ∥2D ≤ min
a∈R,b∈R

n∑

i=1

(yi − a− b di)
2 ≤ ∥y − µ− τd∥2D = ∥y − g∗∥2D, (SA-52)

which implies

E2 ≤ α + β.

We control E1 using uniform law of large number arguments. Notice that ĝ is one member of the class

Gn = {A(x) + d B(x) : A,B ∈ Hn}, where Hn is the class of piecewise constant functions (bounded by U)

on partitions P ∈ Πn. Here

Πn = {P({(x1, d1, y1), · · · , (xn, dn, yn)}) : (xi, di, yi) ∈ R
p × R× R},

is the family of all achievable partitions P by growing a depth K binary tree on n points by iteratively

splitting in x-space based on any criterion. By [Klusowski and Tian, 2024, Equation B.33],

N

(
β

40U
,Hn, ∥·∥PXn ,1

)

≤ (np)2
K

(
417eU2

β

)2K+1

.

A union bound then gives

N

(
β

80U
,Gn, ∥·∥PXn ,1

)

≤ 2(np)2
K

(
417eU2

β

)2K+1

,

where PXn is the empirical measure based on Xn = (X1, · · · , Xn), Xi ∈ R
p for all i. Since ĝ ∈ Gn, we can

then use [Györfi et al., 2002, Theorem 11.4] to get

P(E1 ≥ 0) ≤ P(∃g ∈ Gn : ∥ĝ − g∗∥2 ≥ 2(∥y − ĝ∥2D − ∥y − g∗∥2D) + α + β)

≤ 14 sup
Xn

N

(
β

80U
,Gn, ∥·∥PXn ,1

)

exp

(

− αn

2568U4

)

≤ 28(np)2
K

(
417eU2

β

)2K+1

exp

(

− αn

2568U4

)

.

Choosing α ∝ U42K log(np)
n , and β ∝ U2

n , then we have

E[∥ĝ − g∗∥2] ≤ C

(
U42K log(np)

n
+

U2

n

)

,

where C is a positive universal constant.

Now we relax the condition that |yi(t)| ≤ U . Take A = {|yi(t)| ≤ U, ∀i = 1, · · · , n, t = 0, 1}. Then

E[∥ĝ − g∗∥2] = E[∥ĝ − g∗∥21(A)] + E[∥ĝ − g∗∥21(Ac)]

≤ C

(
U42K log(np)

n
+

U2

n

)

+ E[∥ĝ − g∗∥21(Ac)]. (SA-53)
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A union bound gives

P(Ac) ≤ nP(|yi(0)| ≥ U) + nP(|yi(1)| ≥ U)

≤ n exp(−|U − µ0|) + n exp(−|U − µ1|).

Using Cauchy-Schwarz inequality,

E[∥ĝ − g∗∥21(Ac)] ≤
√

E[∥ĝ − g∗∥4]P(Ac)

≤
√

8n max
t=0,1

(µ4
t + E[εi(t)4]) n max

t=0,1
exp(−|U − µt|).

Choosing U = max{µ0, µ1} + 4 log(n), we have

E[∥ĝ − g∗∥21(Ac)] ≤ C

n
,

for some absolute constant C. Putting it back to Equation (SA-53), we get the desired conclusion.

For the high probability bound, the same analysis as Equation (SA-51) in almost sure sense gives

∥τ̂ − τ∥2 ≤ E[∥B̂ − τ∥2] ≤ 4

min{ξ, 1 − ξ}∥ĝ − g∗∥2,

almost surely. Using sub-exponentianity of εi(t),

∥g − g∗∥1(A) ≤ E11(A) + E21(A)

≤ C1

(
U42K log(np)

n
+

U2

n

)

,

with probability at least n−C2 , where C1 and C2 are some positive absolute constants. Sub-exponentianity

of εi(t), 1 ≤ i ≤ n, t = 0, 1, implies that P(Ac) = n−C3 if we choose U = C4 log(n), where C3 and C4

are positive constants only depending on the distribution of (εi(0), εi(1)). Combining with the previous two

inequalities, we get the second conclusion.

SA-4.24 Proof of Theorem SA-23

Recall (̂ı, ȷ̂) denotes the optimal splitting index and coordinate for the decision stump. Denote τ̂ HON
DIM

(x) by

τ̌(x) for simplicity. We use (yi,x
⊤
i )Mi=1 to denote DHON,1, which we used to construct the causal tree. Denote

by (̂ı, ȷ̂) the splitting index and coordinate at the Kn-th step, based on DHON,1.

Use (ỹi, x̃
⊤
i )Ni=1 to denote DHON,2. Then

sup
x∈X

|τ̌(x) − τ | ≥ |τ̌(0) − τ |

=

∣
∣
∣
∣

∑N
i=1 d̃iε̃i(1)1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)
∑N

i=1 d̃i1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)
−
∑N

i=1(1 − d̃i)ε̃i(0)1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)
∑N

i=1(1 − d̃i)1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)

∣
∣
∣
∣
.
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Since (ε̃i(0), ε̃i(1)) ⊥⊥ x̃i, condition on ı̂, ȷ̂ and X = (x1, · · · ,xn), X̃ = (x̃1, · · · , x̃n), we have

∑N
i=1 d̃iε̃i(1)1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)
∑N

i=1 d̃i1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)
−
∑N

i=1(1 − d̃i)ε̃i(0)1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)
∑N

i=1(1 − d̃i)1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂)

d
=

∑ι̃
i=1 diεi(1)
∑ι̃

i=1 di
−
∑ι̃

i=1(1 − di)εi(0)
∑ι̃

i=1(1 − di)
,

where

ı̃ =

N∑

i=1

1(x̃i,ȷ̂ ≤ xπȷ̂(ı̂),ȷ̂).

Call

Z =
∣
∣
∣

∑ι̃
i=1 diεi(1)
∑ι̃

i=1 di
−
∑ι̃

i=1(1 − di)εi(0)
∑ι̃

i=1(1 − di)

∣
∣
∣.

High probability lower bound on Z. Denote n1 =
∑ι̃

i=1 di, n0 =
∑ι̃

i=1(1 − di), n0 + n1 = ι̃. And

consider the weights wi = di

n1
− 1−di

n0
, so that Z = |∑ι̃

i=1 wiεi|. By Marcinkiewicz–Zygmund inequality and

a Jensen’s inequality on the square root function, for some absolute constant cMZ,

E[Z | D, ι̃] = E

[∣
∣
∣

∑

i

wiεi

∣
∣
∣

∣
∣
∣D, ι̃

]

≥ cMZ E

[(∑

i

w2
i ε

2
i

)1/2 ∣
∣
∣D, ι̃

]

≥ cMZ E

[( ι̃∑

i=1

di
n2
1

εi(1)2 +

ι̃∑

i=1

1 − di
n2
0

εi(0)2
)1/2 ∣

∣
∣D, ι̃

]

≥ cMZ

n0 + n1

ι̃∑

i=1

(

di

√
n0 + n1

n1

√

E[εi(1)2] + (1 − di)

√
n0 + n1

n0

√

E[εi(0)2]
)

= cMZ
1√
ι̃

(√

V[ε(1)] +
√

V[ε(0)]
)

.

Moreover, Assumption SA–2 implies that

E[Z2 | D, ι̃] =

∑ι̃
i=1 diE[εi(1)2]

n2
1

+

∑ι̃
i=1(1 − di)E[εi(0)2]

n2
0

≥
(

1

n1
+

1

n0

)

min{V[εi(1)],V[εi(0)]}.

The Paley-Zygmund inequality implies for θ ∈ (0, 1),

P
(
Z ≥ θE[Z | D, ι̃] | D, ι̃

)
≥ (1 − θ2)

E[Z | D, ι̃]2

E[Z2 | D, ι̃]

≥ C(1 − θ2)
min{V[εi(0)],V[εi(1)]}
max{V[εi(0)],V[εi(1)]}

n0n1

ι̃2
. (SA-54)

Condition on ι̃, n0 ∼ Bernoulli(ι̃, ξ). Hence

P
(
Z ≥ θE[Z | D, ι̃] | ι̃

)
≥ C(1 − θ2)

min{V[εi(0)],V[εi(1)]}
max{V[εi(0)],V[εi(1)]} (ξ − ξ2)(1 − 1

ι̃
)1(ι̃ > 0).

53



We claim that whenever sn ≤ ι̂ ≤ n− sn,

E

[

(1 − 1

ι̃
)1(ι̃ > 0)|ι̂

]

= 1 + oP(1). (SA-55)

It then follows from Equation (SA-54) that whenever sn ≤ ι̂ ≤ M − sn,

P

(

Z ≥ θcMZ
1√
ι̃

(√

V[ε(1)] +
√

V[ε(0)]
)
∣
∣
∣
∣
ι̂

)

≥ C(1 − θ2)
min{V[εi(0)],V[εi(1)]}
max{V[εi(0)],V[εi(1)]} (ξ − ξ2) + oP(1).

Choose θ = 1/2, and take

C = C
min{V[εi(0)],V[εi(1)]}
max{V[εi(0)],V[εi(1)]}

ξ − ξ2

4
.

Then by Theorem SA-19, we have

P

(

Z ≥ 1

2
cMZ

1√
ι̃

(√

V[ε(1)] +
√

V[ε(0)]
)

, ι̂ ≤ nb

)

≥ C
b

2e
+ oP(1).

We can show via the same argument as Theorem SA-5 that lim infn→∞ P(ι̃ ≤ nb/2|ι̂ ≤ nb) = 1. Hence

lim inf
n→∞

P

(

Z ≥ 1

4
cMZ

1√
nb

(√

V[ε(1)] +
√

V[ε(0)]
))

≥ C
b

2e
.

Proof of Equation (SA-55). Let F be the cummulative distribution function of xi. Suppose 1 ≤ k ≤ n/2.

Then F (x(k)) ∼ Beta(k,M − k + 1). By a Bernstein bound for Beta variables [Skorski, 2023, Theorem 1],

we have for all ϵ > 0,

P(F (x(k)) > k/M − ϵ) ≤ exp
(

− ϵ2

2v

)

,

where for large enough n,

v =
k(M − k + 1)

(M + 1)2(M + 2)
≤ 2

k

M2
.

Hence with probability at least 1 − s−1
n ,

F (x(k)) ≥ k/M − 2

√

log(sn)k

M
.

Condition on X = (x1, · · · ,xn), 1(x̃i ≤ x(k))’s are i.i.d Bernoulli(F (x(k))). Hence condition on X and ι̂, with

probability at least 1 − s−1
n ,

ı̃/N = N−1
N∑

i=1

1(x̃i ≥ x(ι̂)) ≥ F (x(ι̂)) − 2

√

log(sn)F (x(ι̂))

N
.
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It follows that on sn ≤ ι̂ ≤ M − sn, using boundedness of (1 − 1
ι̃ )1(ι̃ > 0),

E

[

(1 − 1

ι̃
)1(ι̃ > 0)

∣
∣
∣ι̂
]

= E

[

(1 − 1

ι̃
)1(ι̃ > 0),1(ι̃ ≥ ι̂/8)

∣
∣
∣ι̂
]

+ E

[

(1 − 1

ι̃
)1(ι̃ > 0),1(ι̃ < ι̂/8)

∣
∣
∣ι̂
]

= 1 + O(
8

ι̂
) + O(s−1

n )

= 1 + O(s−1
n ).

SA-4.25 Proof of Theorem SA-24

For simplicity, denote τ̂ HON
DIM

by τ̂ . Since given the partition P chosen by DT, Equation (SA-50) is still satisfied.

We can use the same argument in the proof of Theorem SA-22 condition on DT to get

EDτ [∥τ̂ − τ∥2|DT] ≤ C
2K log(nτ )5

nτ
,

where C is a positive constant that only depends on ξ, µ and the distribution of εi(0), εi(1). In particular,

the expectation is taken with respect to Dτ with effective sample size nτ .

Since condition on DT, the partition P is fixed, we can use the same argument as in Theorem SA-6 to

show that ĝ lies in a class HnT
[P] with covering number,

N(εU,HnT
[P], ∥·∥PXnτ ) ≤

(
2

ε

)2K

, ε ∈ (0, 1),

when we assume yi(0) and yi(1) are bounded by U . In comparison, in the proof of Theorem SA-22, we show

ĝ lies in HnT
with covering number

N(εU,HnT
, ∥·∥PXnτ ) ≤ 2(nTp)2

K

(
417eU2

β

)2K+1

, ε ∈ (0, 1).

This improvement of covering number due to honesty means we can replace a log(nτp)-penalty in the result

of Theorem SA-22 by log(nτ ). Now uncondition over DT and using the fact that ρ−1 ≤ nτ/nT ≤ ρ, we get

the conclusion.

SA-4.26 Proof of Theorem SA-25

The conclusion follows from Theorem SA-19 and the same proof for Theorem SA-7.

SA-4.27 Proof of Theorem SA-26

For simplicity, denote τ̂X
DIM

(x;K) by τ̃(TK), and N = n/(K + 1) denotes the sample size for each folds in the

X sample splitting scheme.

Let t1, t2, · · · , t2K denote the 2K leaf nodes in the decision tree, (if a node cannot be further refined,

we duplicate the split indices and values at the next level). And let N1, N2, · · · , N2K and m1,m2, · · · ,m2K

denote the number of observations and the Lebesgue measure of the 2K leaf nodes, respectively. Note that

N⃗ = (N1, · · · , N2K ) are independent of the ỹi data by the honest condition and the xi data per Assumption

SA–1. As in the proof of Theorem SA-8, we can show condition on N⃗ , mk ∼ Beta(Nk, N −Nk + 1)

55



Thus, the IMSE can be bounded as follows: Since condition on N⃗ , mk’s are independent to the refreshed

samples d̃i, ε̃i(0), ε̃i(1)’s, we have

E

[
∫

X

(τ̃(TK)(x) − τ)2Px(dx)

]

=

2K∑

k=1

E

[

mk

(∑

xi∈tk
d̃iε̃i(1)

∑

xi∈tk
d̃i

−
∑

xi∈tk
(1 − d̃i)ε̃i(0)

∑

xi∈tk
1 − d̃i

)2]

≤
2K∑

k=1

E

[

E[mk|N⃗ ] E

[(∑

xi∈tk
d̃iε̃i(1)

∑

xi∈tk
d̃i

−
∑

xi∈tk
(1 − d̃i)ε̃i(0)

∑

xi∈tk
1 − d̃i

)2∣
∣
∣
∣
N⃗

]]

≤
2K∑

k=1

E

[

Nk

N

(
1(
∑

xi∈tk
di > 0)

∑

xi∈tk
di

+
1(
∑

xi∈tk
1 − di > 0)

∑

xi∈tk
1 − di

)]

max{V[εi(0)],V[εi(1)]}.

Notice that condition on N⃗ ,
∑

xi∈tk
di ∼ Bin(Nk, ξ) and

∑

xi∈tk
1− di ∼ Bin(Nk, 1− ξ). Using the fact that

for a binomial random variable W ∼ Bin(n, p), we have

E

[
1

W
1(W > 0)

]

≤ C

npCp
,

where C is an absolute constant, and Cp is some constant that only depends on p. It follows that

E

[
∫

X

(τ̃(TK)(x) − τ)2Px(dx)

]

≤
2K∑

k=1

E

[

Nk

N

(
1

Nkξ
+

1

Nk(1 − ξ)

)]

max{V[εi(0)],V[εi(1)]}

≲
2K

N
.

SA-4.28 Proof of Lemma SA-27

Assume w.l.o.g. k ≤ n/2, since the case of k > n/2 can be dealt with by symmetry. From the proof of

Lemma SA-17,

sup
rn≤k<n−rn

k(n− k)

n

∣
∣
∣
∣
(µ̂L,0(k, ℓ) − µ̂R,0(k, ℓ))2 − (µ̄L,0(k, ℓ) − µ̄R,0(k, ℓ))2

∣
∣
∣
∣

= OP

(
log logn√

rn

)

.

Moreover, the proof of the term R1 in Lemma SA-17 implies

sup
rn≤k<n−rn

((µ̂L,0(k, ℓ) − µ̂R,0(k, ℓ))2 + (µ̄L,0(k, ℓ) − µ̄R,0(k, ℓ))2) = OP

(
log logn

rn

)

.

Now we consider the randomness induced by n0, nL,0, nR,0. By Theorem A.4.1 in Csörgö and Horváth [1997],

max
rn≤k<n−rn

√
k ·
∣
∣
∣
∣

1

k

k∑

i=1

(
di
ξ

− 1)

∣
∣
∣
∣

= OP(
√

log logn),
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which implies

sup
rn≤k<n−rn

∣
∣
∣
∣

nL,0(k)nR,0(k)

n0
− (1 − ξ)

k(n− k)

n

∣
∣
∣
∣

= OP(
√

rn log log n).

Putting together, triangle inequality implies

max
1≤ℓ≤p

max
rn≤k<n−rn

∣
∣
∣I

SSE(k, ℓ) − I
prox(k, ℓ)

∣
∣
∣ = OP

(
log log(n)3/2

r
1/2
n

)

.

SA-4.29 Proof of Lemma SA-28

The proof of Lemma SA-18 implies that

max
1≤ℓ≤p

max
1≤k≤sn

k

∣
∣
∣
∣
(µ̂L,0(k, ℓ) − µ̂R,0(k, ℓ))2 − (µ̄L,0(k, ℓ) − µ̄R,0(k, ℓ))2

∣
∣
∣
∣

= OP(αn),

where αn = ρn log logn + sn
n−sn

log logn, and

max
1≤ℓ≤p

max
1≤k≤sn

k(µ̄L,0(k, ℓ) − µ̄R,0(k, ℓ))2 = OP(ρn log log n).

Hence it also follows that

max
1≤ℓ≤p

max
1≤k≤sn

k(µ̂L,0(k, ℓ) − µ̂R,0(k, ℓ))2 = OP

( sn
n− sn

log logn + αn

)

= OP(αn).

When 1 ≤ k ≤ sn, we have
nL,0(k)nR,0(k)

n0
≤ nL,0(k) ≤ k. The conclusion then follows.

SA-4.30 Proof of Theorem SA-29

The proof is similar to the proof of Theorem SA-19, except that in Theorem SA-19, we approximate the split

criterion by a time-transformed O-U process, while here we approximate the split criterion by the summation

of two independent time transformed O-U processes. We divide the proofs into two steps.

Step 1: Approximation of fit-based processes by ipw-based processes

Let 0 < a < b < 1. Let ρn be a sequence of real numbers taking values in (0, 1) to be determined, and

take sn = exp((log n)ρn). Then for large enough n, we have sn ≤ na ≤ nb ≤ n− sn. Consider the event

An = {∃ℓ ∈ [p] : max
k∈[n]

I
SSE(k, ℓ) > max

k/∈[sn,n−sn]
I

SSE(k, ℓ)}.

Equation (A.4.18) and (A.4.20) imply that for each ℓ ∈ [p],

max
1≤k≤sn,n−sn≤k≤n

I
prox(k, ℓ) = OP(ρn log log(n)),

max
sn≤k≤n−sn

I
prox(k, ℓ) = 2 log log(n)(1 + oP(1)).
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Hence

max
1≤k≤sn,n−sn≤k≤n

I
prox(k, ℓ) = oP

(

max
sn≤k≤n−sn

I
prox(k, ℓ)

)

, ℓ ∈ [p],

Approximations results from Lemma SA-27 (taking rn = sn) and Lemma SA-28, using the same argument

as step 1 in the proof of Theorem SA-19, with log log log log(n)/ log log(n) ≪ ρn ≪ 1, then implies

max
1≤k≤sn,n−sn≤k≤n

I
SSE(k, ℓ) = oP

(

max
sn≤k≤n−sn

I
SSE(k, ℓ)

)

, ℓ ∈ [p].

Using a union bound, we get P(An) → 0 as n → ∞. Observe that on the event Ac
n, the argmax for I SSE

should be inside [sn, n− sn]. Hence

P

(

∃ℓ ∈ [p] : max
k

I
SSE(k, ℓ) > max

k,j ̸=ℓ
I

SSE(k, j), max
k

I
SSE(k, ℓ) > max

k/∈[na,nb]
I

SSE(k, ℓ)
)

≥ P

(

∃ℓ ∈ [p] : max
k

I
SSE(k, ℓ) > max

k,j ̸=ℓ
I

SSE(k, j), max
k

I
SSE(k, ℓ) > max

k/∈[na,nb]
I

SSE(k, ℓ) and Ac
n

)

− P(An)

≥ P

(

∃ℓ ∈ [p] : max
k∈[sn,n−sn]

I
SSE(k, ℓ) > max

j ̸=ℓ
k∈[sn,n−sn]

I
SSE(k, j),

max
k∈[sn,n−sn]

I
SSE(k, ℓ) > max

k/∈[na,nb]
k∈[sn,n−sn]

I
SSE(k, ℓ)

)

− 2P(An).

Now we focus on the first term. By symmetry in the p coordinates,

P

(

∃ℓ ∈ [p] : max
k∈[sn,n−sn]

I
SSE(k, ℓ) > max

j ̸=ℓ
k∈[sn,n−sn]

I
SSE(k, j), max

k∈[sn,n−sn]
I

SSE(k, ℓ) > max
k/∈[na,nb]

k∈[sn,n−sn]

I
SSE(k, ℓ)

)

= pP
(

max
k∈[sn,n−sn]

I
SSE(k, 1) > max

j ̸=1
k∈[sn,n−sn]

I
SSE(k, j), max

k∈[sn,n−sn]
I

SSE(k, 1) > max
k/∈[na,nb]

k∈[sn,n−sn]

I
SSE(k, 1)

)

≥ p sup
z∈R

P

(

max
j ̸=1

k∈[sn,n−sn]

I
SSE(k, j) < z, max

k∈[sn,n−sn]
I

SSE(k, 1) > z > max
k/∈[na,nb]

k∈[sn,n−sn]

I
SSE(k, 1)

)

≥ p sup
z∈R

P

(

max
j ̸=1

k∈[sn,n−sn]

I
SSE(k, j) < z, max

k/∈[na,nb]
k∈[sn,n−sn]

I
SSE(k, 1) < z

)

− pP
(

max
j ̸=1

k∈[sn,n−sn]

I
SSE(k, j) < z, max

k∈[sn,n−sn]
I

SSE(k, 1) < z
)

.

Then using the fact that I prox(k, ℓ) approximates I SSE(k, ℓ) from Lemma SA-17, we have

P

(

∃ℓ ∈ [p] : max
k∈[sn,n−sn]

I
SSE(k, ℓ) > max

j ̸=ℓ
k∈[sn,n−sn]

I
SSE(k, j), max

k∈[sn,n−sn]
I

SSE(k, ℓ) > max
k/∈[na,nb]

k∈[sn,n−sn]

I
SSE(k, ℓ)

)

≥ p sup
z∈R

P

(

max
j ̸=1

k∈[sn,n−sn]

I
prox(k, j) < z − vn, max

k/∈[na,nb]
k∈[sn,n−sn]

I
prox(k, 1) < z − vn

)

− pP
(

max
j ̸=1

k∈[sn,n−sn]

I
prox(k, j) < z + vn, max

k∈[sn,n−sn]
I

prox(k, 1) < z + vn

)

, (SA-56)
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where vn = OP(log log(n)s
−1/2
n ).

Step 2: Gaussian approximation of IPW partial sums

Recall that

I
prox(k, ℓ) =(1 − ξ)

k(n− k)

n
(µ̄L,0(k, ℓ) − µ̄R,0(k, ℓ))2 + ξ

k(n− k)

n
(µ̄L,1(k, ℓ) − µ̄R,1(k, ℓ))2. (SA-57)

and we will show that high dimensional random vector Ξ from concatenating (
√

(1 − ξ)k(n−k)
n (µ̄L,0(k, ℓ) −

µ̄R,0(k, ℓ)) : k ∈ [n], ℓ ∈ [p]) and (
√

(1 − ξ)k(n−k)
n (µ̄L,1(k, ℓ) − µ̄R,1(k, ℓ)) : k ∈ [n], ℓ ∈ [p]) can be approx-

imated by a Gaussian random vector with the same covariance structure. The proof will still be based on

writing Ξ as 1√
n

∑n
i=1 Ci where

Ci =
(√

n
((√ n

k(n− k)
(1(#πℓ(i) ≤ k) − k

n
) : rn ≤ k ≤ n− rn

)⊤
: 1 ≤ ℓ ≤ p

)⊤ 1 − di
1 − ξ

εi(0),

√
n
((√ n

k(n− k)
(1(#πℓ(i) ≤ k) − k

n
) : rn ≤ k ≤ n− rn

)⊤
: 1 ≤ ℓ ≤ p

)⊤ di
ξ
εi(1)

)⊤
,

where #πℓ denotes the inverse mapping of πℓ, as in the proof of Theorem SA-1.

Notice that the random vectors are 2np dimensional. For notational simplicity, in what follows, denote by

et,k,ℓ the indicator of the position corresponding to
√

(1 − ξ)k(n−k)
n (µ̄L,t(k, ℓ) − µ̄R,t(k, ℓ)), t = 0, 1, k ∈ [n],

ℓ ∈ [p].

However, the format of Equation (SA-57) induces a different geometry when approximating probabilities

in Equation (SA-56). Instead of high dimensional CLT for hyper-rectangles, we consider the class of simple

convex sets [Chernozhukov et al., 2017, Section 3.1].

Let J be a subset of [n] × [p]. Consider the class of closed convex sets A containing sets of the form

A = {u ∈ R
2np : (e⊤0,k,ℓu, e

⊤
1,k,ℓu) ∈ B2(sk,ℓ), sk,ℓ ∈ (0, n], (k, ℓ) ∈ J}, (SA-58)

where B2(r) denotes the Euclidean ball centered at 0 with radius r in R
2. That is, the class A contains

intersections of cylinders {u ∈ R
2np : ∥(e⊤j1u, e

⊤
j2
u)∥2 ≤ s}. Notice that for z ∈ (0, n], the event in Equa-

tion (SA-57) (inside sup z) can be characterized as the high dimensional vector Ξ lies in a set in A.

For each A ∈ A, we consider its approximation by simple convex sets. For each B2(r), denote by Bin,n
2 (r)

and Bout,n
2 (r) its inscribed and circumscribed regular n2-gon. Take m = n2|J |. Then for each A ∈ A of the

form (SA-58), take

Am = {u ∈ R
2np : (e⊤0,k,ℓu, e

⊤
1,k,ℓu) ∈ Bin,n

2 (sk,ℓ), sk,ℓ ∈ (0, n], (k, ℓ) ∈ J},

and

Am,ϵ = {u ∈ R
2np : (e⊤0,k,ℓu, e

⊤
1,k,ℓu) ∈ Bout,n

2 (sk,ℓ), sk,ℓ ∈ (0, n], (k, ℓ) ∈ J}.

Then Am ⊆ A ⊆ Am,ϵ. Moreover, denote by V(Am) the set consisting of m unit vectors that are outward

normal to the facets of Am. Then Am can be alternatively characterized by

Am = ∪v∈V(Am){w ∈ R
2np : w⊤v ≤ SA(v)}, SA(v) = sup{w⊤v : w ∈ A}.
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Then we can analogously characterize Am,ϵ by

Am,ϵ = ∪v∈V(Am){w ∈ R
2np : w⊤v ≤ SA(v) + ϵv}, SA(v) = sup{w⊤v : w ∈ A},

where ϵv ≤ n−1 for large enough n. This shows our class A is a subclass of Asi(1, 3) (see [Chernozhukov

et al., 2017, Section 3.1]). Now we check its conditions (M.1’), (M.2’) and (E.1’). Let v ∈ V(Am). The

definition of Am implies v = v0,k,ℓe0,k,ℓ + v1,k,ℓe1,k,ℓ for some (k, ℓ) ∈ J, and v20,k,ℓ + v21,k,ℓ = 1. Let

v ∈ V(Am).

1

n

n∑

i=1

E[|v⊤Ci|2]

=
1

n

n∑

i=1

E

[(

v0,k,ℓ
n

√

k(n− k)
(1(#πℓ(i) ≤ k) − k

n
)
1 − di
1 − ξ

εi(0)

+ v1,k,ℓ
n

√

k(n− k)
(1(#πℓ(i) ≤ k) − k

n
)
di
ξ
εi(1)

)2]

=
1

n

(
n

√

k(n− k)

)2 n∑

i=1

{

v20,k,ℓE

[(

(1(#πℓ(i) ≤ k) − k

n
)
1 − di
1 − ξ

εi(0)

)2]

+ v21,k,ℓE

[(

(1(#πℓ(i) ≤ k) − k

n
)
di
ξ
εi(1)

)2]}

≥ min{V[(1 − ξ)−1(1 − di)εi(0)],V[ξ−1diεi(1)]},

which verifies (M.1’). The fact that only two entries of v are nonzero and v20,k,ℓ + v21,k,ℓ = 1 implies that

n−1
n∑

i=1

E[|v⊤Ci|3] ≤ 4n−1
n∑

i=1

E[|e⊤0,k,ℓCi|3] + 4n−1
n∑

i=1

E[|e⊤1,k,ℓCi|3] ≲
√

n/rn,

where the last inequality is from the calculation in Equation (SA-21), and this verifies (M.2’) for the third

moment. Moreover,

n−1
n∑

i=1

E[|v⊤Ci|4] ≤ 8n−1
n∑

i=1

E[|e⊤0,k,ℓCi|4] + 8n−1
n∑

i=1

E[|e⊤1,k,ℓCi|4]

≤
√

n/rn8n−1
n∑

i=1

E[|e⊤0,k,ℓCi|3] +
√

n/rn8n−1
n∑

i=1

E[|e⊤1,k,ℓCi|3]

≲ n/rn.

The same logic shows that E[exp(|v⊤Ci|/(K
√

n/rn))] ≤ 2, where K is an absolute constant. Putting

together, we verify conditions (M.2’) and (E.1’) with Bn =
√

n/rn. Hence by [Chernozhukov et al., 2017,

Proposition 3.1], there exists mean-zero random vectors Di ∼ N(0,E[CiC
⊤
i ]) such that

sup
A∈A

|P(n−1/2
n∑

i=1

Ci ∈ A) − P(n−1/2
n∑

i=1

Di ∈ A)| ≲
(

log7(n)

rn

)1/6

. (SA-59)

Step 4: Gaussian-to-Gaussian Approximation

Observe that for any k1, k2 ∈ [n], ℓ1, ℓ2 ∈ [p], we have Cov[e⊤0,k1,ℓ1
Ci, e

⊤
1,k2,ℓ2

Ci] = 0. The same calculation

60



as Multivariate Case Step 2 for the proof of Theorem SA-1 implies we can replace Di by another mean-zero

Gaussian random vector Zi such that

Cov[e⊤t1,k1,ℓ1Zi, e
⊤
t2,k2,ℓ2Zi] =







Cov[e⊤t1,k1,ℓ1
Di, e

⊤
t2,k2,ℓ2

Di], if ℓ1 = ℓ2,

0, otherwise.

We want to show 1√
n

∑n
i=1 Zi is close to 1√

n

∑n
i=1 Di, measured by the probability of taking value in sets

from A defined at Equation (SA-58). We omit details for simplicity, but illustrate the main skeleton here. As

in Step 2, Nazarov inequality implies we only need to work on the m-generated convex approximation with

ϵ precision Am = Am(A) for A ∈ A, for a reason given in [Chernozhukov et al., 2017, proof of Proposition

3.1]. Moreover, P( 1√
n

∑n
i=1 Zi ∈ Am) = P((v⊤( 1√

n

∑n
i=1 Zi))v∈V(Am) ≤ t) for some t ∈ R

m. Hence we only

need to show

sup
t∈Rm

∣
∣
∣
∣
P((v⊤(

1√
n

n∑

i=1

Zi))v∈V(Am) ≤ t) − P((v⊤(
1√
n

n∑

i=1

Di))v∈V(Am) ≤ t)

∣
∣
∣
∣

= o(1).

But the definition of A in Equation (SA-58) implies for any A ∈ A,v ∈ V(Am), there exists ek, ej and

v2k + v2j = 1 such that v = vkek + vjej , with

Cov

[

e⊤k (
1√
n

n∑

i=1

Zi), e
⊤
j (

1√
n

n∑

i=1

Zi)

]

= Cov

[

e⊤k (
1√
n

n∑

i=1

Di), e
⊤
j (

1√
n

n∑

i=1

Di)

]

= 0,

and hence

min
z∈V(Am)

V

[

v⊤(
1√
n

n∑

i=1

Zi))v∈V(Am)

]

≳ 1.

Together with Equation (SA-24), we know

max
v1,v2∈V(Am)

∣
∣
∣
∣
Cov

[

v⊤
1 (

1√
n

n∑

i=1

Zi),v
⊤
2 (

1√
n

n∑

i=1

Zi)

]

− Cov

[

v⊤
1 (

1√
n

n∑

i=1

Di),v
⊤
2 (

1√
n

n∑

i=1

Di)

]∣
∣
∣
∣

= O(r−1/2
n ).

The Gaussian-to-Gaussian Comparison result [Chernozhuokov et al., 2022, Proposition 2.1] them implies

sup
A∈A

|P(n−1/2
n∑

i=1

Zi ∈ A) − P(n−1/2
n∑

i=1

Di ∈ A)| = O(log(n)r−1/2
n ). (SA-60)

Step 5: Orstein-Uhlenbeck Process Calculations

Now we revisit Equation (SA-56). Consider

I
Gauss(k, ℓ) =(1 − ξ)

k(n− k)

n
(µ̃L,0(k, ℓ) − µ̃R,0(k, ℓ))2 + ξ

k(n− k)

n
(µ̃L,1(k, ℓ) − µ̃R,1(k, ℓ))2,
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with

µ̃L,0(k, ℓ) =
1

k

∑

i≤k

uπℓ(i), µ̃L,1(k, ℓ) =
1

k

∑

i≤k

vπℓ(i),

µ̃R,0(k, ℓ) =
1

n− k

∑

i>k

uπℓ(i), µ̃R,1(k, ℓ) =
1

n− k

∑

i>k

vπℓ(i).

Equations (SA-59) and (SA-60) imply that

sup
z∈∈[−n,n]

P

(

max
j ̸=1

k∈[sn,n−sn]

I
prox(k, j) < z − vn, max

k/∈[na,nb]
k∈[sn,n−sn]

I
prox(k, 1) < z − vn

)

− P

(

max
j ̸=1

k∈[sn,n−sn]

I
prox(k, j) < z + vn, max

k∈[sn,n−sn]
I

prox(k, 1) < z + vn

)

= sup
z∈[−n,n]

P

(

max
k∈[sn,n−sn]

I
Gauss(k, 1) < z − vn

)p−1

P

(

max
k/∈[na,nb]

k∈[sn,n−sn]

I
Gauss(k, 1) < z − vn

)

− P

(

max
j ̸=1

k∈[sn,n−sn]

I
Gauss(k, j) < z + vn

)p−1

P

(

max
k∈[sn,n−sn]

I
Gauss(k, 1) < z + vn

)

+ o(1).

The same argument as [Csörgö and Horváth, 1997, (A.4.25) to (A.4.37)] shows that there exists two inde-

pendent standard Brownian bridges over [0, 1], Bn,L and Bn,R, for each n, such that

∣
∣
∣
∣

max
k∈[sn,n−sn]

√

I Gauss(k, 1) − sup
t∈[sn/n,1−sn/n]

σ

√

B2
n,L

t(1 − t)
+

B2
n,R

t(1 − t)

∣
∣
∣
∣

= ϵn,

∣
∣
∣
∣

max
k∈[sn,n−sn]\[na,nb]

√

I Gauss(k, 1) − sup
t∈[sn/n,1−sn/n]\[n1−a,n1−b]

σ

√

B2
n,L

t(1 − t)
+

B2
n,R

t(1 − t)

∣
∣
∣
∣

= ϵn,

with σ2 = V[εi(0)] = V[εi(1)] and ϵn = oP((log log n)−1/2). Let {UL(t) : t ∈ R} and {UR(t) : t ∈ R} be two

independent O-U processes with E[Uj(t)] = 0 and E[Uj(s)Uj(t)] = e−|s−t|, j = L,R. Then

{(
Bn,L

√

t(1 − t)
,

Bn,R
√

t(1 − t)

)

: t ∈ [0, 1]

}

d
= {(UL(log(t/(1 − t))), UR(log(t/(1 − t)))) : t ∈ [0, 1]}.

Take N(t) = ∥(UL(t), UR(t))∥2, t ∈ R. Then a time change and stationarity of O-U process implies

P

(

sup
t∈[1/n,1−1/n]\[n1−a,n1−b]

√

B2
n,L

t(1 − t)
+

B2
n,R

t(1 − t)
≤ y

)

= P

(

sup
− log(n−1)≤t<log(na−1/(1−na−1),log(nb−1/(1−nb−1))<t≤log(n−1)

|N(t)| ≤ y

)

= P

(

sup
0≤t<log(na−1(n−1)/(1−na−1),log

nb−1(n−1)

1−nb−1 )<t≤2 log(n−1)

|N(t)| ≤ y

)

,
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and

P

(

sup
t∈[1/n,1−1/n]\[n1−a,n1−b]

√

B2
n,L

t(1 − t)
+

B2
n,R

t(1 − t)
≤ y

)

= P

(

sup
0≤t<2 log(n−1)

|N(t)| ≤ y

)

.

An expansion based on [Horváth, 1993, Lemma 2.1] (Lemma TODO) gives for any z ∈ R,

P

(

sup
0≤t<c log(n)

|N(t)| ≤ z + 2 log log(n) + log log log(n)
√

2 log log(n)
+ ϵn

)

= exp(−e−z+log(c)) + o(1).

Moreover, Gaussian correlation inequality [Lata la and Matlak, 2017, Remark 3 (i)] and stationarity of O-U

process implies

P

(

sup
0≤t<log(

na−1(n−1)

1−na−1 ), log
nb−1(n−1)

1−nb−1 )<t≤2 log(n−1)

|N(t)| < z + 2 log log(n) + log log log(n)
√

2 log log(n)
+ ϵn

)

≥ P

(

sup
0≤t<log(

na−1(n−1)

1−na−1 )

|N(t)| < z + 2 log log(n) + log log log(n)
√

2 log log(n)
+ ϵn

)

· P
(

sup
0<t≤log(n1−b(n−1)(1−nb−1))

|N(t)| < z + 2 log log(n) + log log log(n)
√

2 log log(n)
+ ϵn

)

= exp(−2e−z+log(2−(b−a))) + o(1).

Putting together and choosing z∗ that maximizes z 7→ exp(−2e−z+log(2−(b−a))) − exp(−2e−z+log(c)), we can

get

sup
z∈[−n,n]

P

(

max
k∈[sn,n−sn]

I
Gauss(k, 1) < z − vn

)p−1

P

(

max
k/∈[na,nb]

k∈[sn,n−sn]

I
Gauss(k, 1) < z − vn

)

− P

(

max
j ̸=1

k∈[sn,n−sn]

I
Gauss(k, j) < z + vn

)p−1

P

(

max
k∈[sn,n−sn]

I
Gauss(k, 1) < z + vn

)

≥ sup
z

exp
(

− 2(p− 1)e−(z−log(2))
)(

exp
(

− 2e−(z−log(2−(b−a)))
)

− exp
(

− 2e−(z−log(2))
))

=
b− a

2p

(

1 − b− a

2p

) 2p
b−a−1

≥ b− a

2pe
.

Symmetry then implies for any 0 < a < b < 1 and ℓ ∈ [p], we have

lim inf
n→∞

P
(
na ≤ ı̂SSE ≤ nb, ȷ̂SSE = ℓ

)
= lim inf

n→∞
P
(
n− nb ≤ ı̂SSE ≤ n− na, ȷ̂SSE = ℓ

)
≥ b− a

2pe
.

SA-4.31 Proof of Corollary SA-30

Notice that although the splitting criteria is different from the regression tree, once cells are given the

estimator given by the fit-based tree is exactly the same as the regression tree (see Section SA-3.2). Hence

result can be proved based on Theorem SA-29 and the same logic as Theorem SA-20.
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SA-4.32 Proof of Corollary SA-31

Notice that although the splitting criteria is different from the regression tree, once cells are given the

estimator given by the fit-based tree is exactly the same as the regression tree (see Section SA-3.2). Hence

result can be proved based on Theorem SA-29 and the same logic as Theorem SA-21.

SA-4.33 Proof of Corollary SA-32

Since the tree is constructed by minimizing the objective Equation (SA-10) iteratively. The empirical risk

minimization property Equation (SA-52) still holds. Hence the result follows from the same argument as the

proof of Theorem SA-22.

SA-4.34 Proof of Corollary SA-33

Notice that although the splitting criteria is different from the regression tree, once cells are given the

estimator given by the fit-based tree is exactly the same as the regression tree (see Section SA-3.2). Hence

result can be proved based on Theorem SA-29 and the same logic as Theorem SA-23.

SA-4.35 Proof of Corollary SA-34

Since the tree is constructed by minimizing the objective Equation (SA-10) iteratively. The empirical risk

minimization property Equation (SA-52) still holds. Hence the result follows from the same argument as the

proof of Theorem SA-24.

SA-4.36 Proof of Corollary SA-35

Notice that although the splitting criteria is different from the regression tree, once cells are given the

estimator given by the fit-based tree is exactly the same as the regression tree (see Section SA-3.2). Hence

result can be proved based on Theorem SA-29 and the same logic as Theorem SA-25.

SA-4.37 Proof of Corollary SA-36

The result follows from the same argument as Theorem SA-26.

SA-4.38 Proof of Lemma SA-37

First, we consider X under Assumption SA–2. Since (yi, di)’s are from dataset Dτ independent to the dataset

DT1 to DTK
for tree construction, it is easy to check that

E[τ̂Xl (x;K)] = E[E[τ̂Xl (x;K)|T, (xi)i∈Dτ
]] = τ, l ∈ {DIM, IPW, SSE}.

Next, we consider HON under Assumption SA–2. Denote by t(x) the node that contains x, and denote by

n(t) the local sample size in Dτ , where n(t) =
∑

i∈Dτ
1(xi ∈ t). Then

E[τ̂ HON
IPW

(x;K)|DT] = E[τ̂ HON
IPW

(x;K)1(n(t(x)) > 0)|DT] + 0 · P(n(t(x)) = 0|DT)

= E[τ̂ HON
IPW

(x;K)|DT, n(t(x)) > 0]P(n(t(x)) > 0|DT)

= τP(n(t(x)) > 0|DT),
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where in the third line, we have used the fact that εi(0) and εi(1) in Dτ are independent to xi’s in Dτ and

the whole dataset DT, with E[εi(0)] = E[εi(1)] = 0. Unconditioning over DT, then we get

E[τ̂ HON
IPW

(x;K)] = τP(n(t(x)) > 0).

The results for DIM and SSE can be obtained by similar arguments.

Finally, we consider NSS under Assumption SA–2 and the additional symmetric error εi(0), and εi(1)

assumption. We will use an induction assumption.

Base case: K = 1. Due to the assumption that µ0 and µ1 are constant, we can rewrite the splitting

criteria from Definition 2 in the main paper as

DIM :
n(tL)n(tR)

n(t)

( 1

n1(tL)

∑

i:xi∈tL

diεi(1) − 1

n0(tL)

∑

i:xi∈tL

(1 − di)εi(0)

− 1

n1(tR)

∑

i:xi∈tR

diεi(1) +
1

n0(tR)

∑

i:xi∈tR

(1 − di)εi(0))
)2

, (SA-61)

and

IPW :
n(tL)n(tR)

n(tL)

( 1

n(tL)

∑

i:xi∈tL

(
di
ξ
εi(1) − 1 − di

1 − ξ
εi(0)) − 1

n(tR)

∑

i:xi∈tR

(
di
ξ
εi(1) − 1 − di

1 − ξ
εi(0))

)2

,

(SA-62)

and

SSE :
n1(tL)n1(tR)

n1(t)

( 1

n1(tL)

∑

i:xi∈tL

diεi(1) − 1

n1(tR)

∑

i:xi∈tR

diεi(1)
)2

+
n0(tL)n0(tR)

n0(t)

( 1

n0(tL)

∑

i:xi∈tL

(1 − di)εi(0) − 1

n0(tR)

∑

i:xi∈tR

(1 − di)εi(0)
)2

. (SA-63)

Denote the vector ε = (ε1(0), ε1(1), · · · , εn(0), εn(1)). Notice that for all three criteria, for any d =

(d1, · · · , dn) and tL, tR, ε = u and ε = −u give the same value. Hence condition on d and the data-driven

split region t̂L and t̂R, ε is symmetrically distributed around zero. It then follows from the form of the three

estimators that all of them are unbiased.

Induction step: K ≥ 2. Each leaf node t in layer K − 1 is further partitioned into tL and tR such that

Equations (SA-61), (SA-62) and (SA-63) are maximized. The induction hypothesis is that condition on all

leaf t in the K − 1 th layer and d, ε is symmetrically distributed around zero. Again for all three criteria,

given K−1th leaf node t, for any d = (d1, · · · , dn) and tL, tR, ε = u and ε = −u give the same value. Hence

the resulting Kth level t̂L and t̂R are such that condition on d and the data-driven split region t̂L and t̂R,

ε is symmetrically distributed around zero, making the estimators unbiased.
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