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Abstract

Boundary discontinuity designs—also known as Multi-Score Regression Discontinuity (RD)
designs, with Geographic RD designs as a prominent example—are often used in empirical
research to learn about causal treatment effects along a continuous assignment boundary defined
by a bivariate score. This article introduces the R package rd2d, which implements and extends
the methodological results developed in Cattaneo et al. [2025] for boundary discontinuity designs.
The package employs local polynomial estimation and inference using either the bivariate score
or a univariate distance-to-boundary metric. It features novel data-driven bandwidth selection
procedures, and offers both pointwise and uniform estimation and inference along the assignment
boundary. The numerical performance of the package is demonstrated through a simulation
study.

Keywords: treatment effects, regression discontinuity designs, nonparametric regression.

1 Introduction

Regression Discontinuity (RD) designs are commonly used for treatment effect estimation and causal
inference in quantitative sciences [see Cattaneo and Titiunik, 2022, and references therein]. In their
canonical form, each unit i ∈ {1, 2, · · · , n} is assigned to control (Ti = 0) or treatment (Ti = 1)
according to the discontinuous rule Ti = 1(Xi ≥ c), where Xi denotes a scalar score variable, c

denotes a scalar cutoff, and 1(·) is the indicator function. The key idea underlying all RD designs is
that units with a score near the cutoff determining treatment assignment are comparable in terms of
all pretreatment observables and unobservable characteristics, the only difference being that some
units are assigned to control (Xi < c) while other are assigned to treatment (Xi ≥ c). Therefore, in
the absence of score manipulation, units having a score near (but on different sides of) the cutoff
can be used as counterfactual of each other to learn about causal treatment effects.

Boundary discontinuity designs generalize the canonical RD design to allow for a multi-dimensional
score variable [Papay et al., 2011, Reardon and Robinson, 2012, Keele and Titiunik, 2015]. The
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(a) Two-Score RD Design.
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(b) Geographic RD Design.

Figure 1: Two Examples of Boundary Discontinuity Designs

most common case is a bivariate score Xi = (X1i, X2i)
⊤ with an assignment boundary curve B

on its support. For example, Londoño-Vélez et al. [2020] study the effect of a Colombian social
program where X1i is a poverty index and X2i is an exam grade, for each student i, and where
eligibility for receiving the treatment required either a minimum poverty index (X1i ≥ c1) or a min-
imum exam grade (X2i ≥ c2). Therefore, in their application, the boundary determining treatment
is B = {(X1i, X2i) : {X1i ≥ c1 and X2i = c2} ∪ {X1i = c1 and X2i ≥ c2}}. This type of bivariate
RD designs, where each score component has its own cutoff, is illustrated in Figure 1a. Another
prototypical class of boundary discontinuity designs are the Geographic RD designs: for instance,
Keele and Titiunik [2015] study the effect of political advertisements on voter turnout during a
presidential campaign by leveraging sharp discontinuities in exposure to presidential ads induced
across geographic media market boundaries. Figure 1b illustrates a generic example of a Geographic
RD design employing the boundary separating two US states. Jardim et al. [2024] gives another
recent empirical application of a boundary discontinuity design in the context of labor markets, and
provides further references. See Cattaneo et al. [2020, 2024] for a two-part practical introductory
monograph.

While classical RD designs based on a scalar score are well-understood in the literature, boundary
discontinuity designs are surprisingly less studied. Methodological developments have lagged em-
pirical practice for a while, leading to different approaches in practice, but without a foundational
understanding of their relative merits. Cattaneo et al. [2025] address this gap in the literature
by studying the properties of two leading approaches often used in empirical research leveraging
boundary discontinuity designs:

• the location-based approach employs bivariate local polynomial regression analysis based on
the bivariate location score relative to each point on the boundary B; and

• the distance-based approach employs univariate local polynomial regression analysis based on
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a scalar score constructed as distance to each point on the boundary B.

Cattaneo et al. [2025] study the two methodologies, and establish novel identification, estimation
and inference results, both pointwise for each point on B and uniformly over B. Importantly,
they demonstrate that the distance-based approach can exhibit a large bias near kinks or other
irregularities in the assignment boundary B, while the location-based approach remains valid even
in those cases. Based on their findings, it is recommended to employ the bivariate location-based
approach whenever possible, but their results provide foundational theoretical guidance for both
empirical approaches.

This article introduces the R software package rd2d, which expands and implements the method-
ological results in Cattaneo et al. [2025], thereby offering data-driven general-purpose methods for
the analysis and interpretation of boundary discontinuity designs. The package includes the follow-
ing four functions.

• rd2d(). This function implements location-based local polynomial regression analysis for
estimation and inference of causal treatment effects in boundary discontinuity designs. For the
n units of analysis, the function takes as inputs their outcomes Y = (Yi : i = 1, · · · , n)⊤, their
bivariate location scores X = [Xi = (X1i, X2i)

⊤ : i = 1, · · · , n]⊤, their treatment assignment
indicators T = (Ti : i = 1, · · · , n)⊤, and a collection of cutoffs b = [bj = (b1j , b2j)

⊤ :

j = 1, · · · , J ]⊤ on the boundary B determining treatment assignment. The function then
implements estimation and (robust bias-corrected) inference via bivariate local polynomial
regression, both pointwise and uniformly over the cutoffs bj ∈ B. As it is customary in
nonparametric regression settings, the function requires specifying a bandwidth (localization)
parameter: if not provided by the user, it is selected via the companion function rdbw2d() for
data-driven bandwidth selection.

• rdbw2d(). This function employs mean square error (MSE) approximations to implement
(approximate) MSE-optimal bandwidth selection for treatment effect estimation and inference
in boundary discontinuity designs. It provides second-generation direct plug-in (DPI) rules
[Härdle et al., 2004, Wand and Jones, 1994], incorporating several regularization schemes.

• rd2d.dist(). This function implements distance-based local polynomial regression analysis
for estimation and inference of causal treatment effects in boundary discontinuity designs.
For the n units of analysis, the function takes as inputs their outcomes Y = (Yi : i =

1, · · · , n)⊤, their scalar distance scores D = [[Di(bj) : j = 1, · · · , J ]⊤ : i = 1, · · · , n]⊤, and
a collection of cutoffs b = [bj = (b1j , b2j)

⊤ : j = 1, · · · , J ]⊤ on the boundary B. That is,
Ti(bj) = 1(Di(bj) ≥ 0) denotes the treatment assignment for unit i relative to cutoff bj ∈ B.
This function also implements estimation and (robust bias-corrected) inference via univariate
local polynomial regression, both pointwise and uniformly over the cutoffs bj ∈ B. If the
bandwidth (localization) parameter is not provided by the user, then it is chosen via the
companion function rdbw2d.dist() for data-driven bandwidth selection.
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• rdbw2d.dist(). This function implements rule-of-thumb (ROT) bandwidth selection rules,
depending on the specific assumptions on B imposed. More precisely, depending on whether
the assignment boundary B is assumed to be smooth or not, different ROT bandwidth se-
lectors are implemented as supported by the underlying theoretical results in Cattaneo et al.
[2025]. Unfortunately, when B exhibits kinks or other irregularities, it is difficult to develop
MSE-optimal bandwidth selection, in which case the function reverts back to a simple ROT
implementation based on a rate-optimality criteria.

The methods print() and summary() are supported for objects returned by rd2d(), rdbw2d(),
rd2d.dist(), and rdbw2d.dist(). We also demonstrate how to use the outputs to generate useful
plots for empirical work, depicting treatment effect estimation, confidence intervals, and confidence
bands, along the treatment assignment boundary B.

In addition, the four functions in the package rd2d offer several practically relevant features,
including (i) heteroskedasticity-robust and cluster-robust variance estimation, (ii) explicit regular-
ization for the presence of mass points in the bivariate location score Xi or the univariate distance
score Di(bj), and (iii) explicit regularization accounting for specific extreme shape features of the
underlying unknown conditional expectation functions for bandwidth selection. In the case of
rd2d(), the bivariate location-based approach, the data-driven point estimator is approximately
MSE-optimal, while in the case of rd2d.dist(), the univariate distance-based approach, the rate-
optimality of the data-driven point estimator depends on the underlying geometry of the assignment
boundary B. Putting aside the induced bias by the possibly non-smooth B, both functions offer
pointwise (for each bj ∈ B) and uniform (over B) robust bias-corrected inference [Calonico et al.,
2018, 2022].

The main contribution of this article is to introduce and discuss the first general-purpose software
implementation of (MSE-optimal) treatment effect estimation and (pointwise and uniform) uncer-
tainty quantification methods for boundary discontinuity designs, given by the R package rd2d.
To this end, the article develops second-generating DPI rules for bandwidth selection, along with
principled regularization schemes for specific empirically relevant settings (e.g., mass points in Xi)
and practically relevant variance estimators (e.g., cluster-robust).

The rest of the paper proceeds as follows. Section 2 reviews the main methodological contri-
butions in Cattaneo et al. [2025], and presents additional results related to bandwidth selection
and regularized implementation. Section 3 demonstrates the performance of the R package rd2d

using a simulation study with a data generated process calibrated using the data in Londoño-Vélez
et al. [2020]. Section 4 concludes. Replication codes, background references, and other information
related the software package rd2d can be found at: https://rdpackages.github.io/rd2d/.

2 Methods and Implementation

We employ standard potential outcomes notation. Suppose that (Yi(0), Yi(1),X⊤
i )

⊤, i = 1, 2, . . . , n,
is a random sample, where Yi(0) and Yi(1) denote the scalar potential outcomes for unit i under con-
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trol and treatment assignment, respectively. Units are assigned to control group or treatment group
according to their bivariate location score Xi = (X1i, X2i)

⊤ relative to a known one-dimensional
boundary B splitting the support of Xi in two disjoint regions: A0 denotes the control region,
and A1 denotes the treatment region. Thus, B = bd(A0) ∩ bd(A1), where bd(At) denotes the
boundary of the set At. The observed response variable is Yi = (1 − Ti) · Yi(0) + Ti · Yi(1), where
Ti = 1(Xi ∈ A1). Without loss of generality, we assume that the boundary belongs to the treatment
group, that is, bd(A1) ⊂ A1 and B ∩A0 = ∅. Figure 1 gives two graphical examples.

The causal parameter of interest is the average treatment effect curve along the boundary :

τ(x) = E[Yi(1)− Yi(0)|Xi = x], x ∈ B.

Identification follows directly by the usual continuity assumptions invoked in canonical RD designs
[Hahn et al., 2001]:

τ(x) = lim
u→x,u∈A1

µ1(u)− lim
u→x,u∈A0

µ0(u), x ∈ B,

where µt(x) = E[Yi(t)|Xi = x] = E[Yi|Xi = x, Ti = t], t ∈ {0, 1}, are assumed to be smooth
functions. See Papay et al. [2011], Reardon and Robinson [2012], Keele and Titiunik [2015], and
references therein.

For implementation, the continuous assignment boundary B is first discretized into J cutoff points
b = (b1, · · · ,bJ)

⊤ with bj ∈ B for all j = 1, . . . , J . Then, the empirical analysis is conducted
pointwise for each cutoff or uniformly over all cutoffs, employing either the bivariate location score
Xi directly, or an induced univariate distance to each cutoff point. See Cattaneo et al. [2024, Section
5] for an introductory discussion.

Following the methodological recommendations in Cattaneo et al. [2025], most of the discussion
focuses on location-based methods via bivariate local polynomial regression based on the data
(Yi,X

⊤
i )

⊤, i = 1, · · · , n, which are implemented in the functions rd2d() and rdbw2d(). However,
given their predominance in empirical work, Section 2.3 also discusses distance-based methods via
univariate local polynomial regression, which require a user-chosen scalar distance score to each
cutoff point on the assignment boundary, and are implemented in the functions rd2d.dist() and
rdbw2d.dist(). We omit assumptions and other technical details in the remaining of the paper,
which can be found in the references given.

2.1 Location-Based Methods

The location-based treatment effect curve estimator of τ(x) is

τ̂(x) = e⊤1 β̂1(x)− e⊤1 β̂0(x), x ∈ B,
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where, for t ∈ {0, 1},

β̂t(x) = argmin
β∈Rpp+1

n∑
i=1

(
Yi −Rp(Xi − x)⊤β

)2
Kh(Xi − x)1(Xi ∈ At),

with pp = (2 + p)(1 + p)/2− 1, Rp(u) = (1, u1, u2, u
2
1, u

2
2, u1u2, · · · , u

p
1, u

p
2)

⊤ denotes the pth order
polynomial expansion of the bivariate vector u = (u1, u2)

⊤, Kh(u) = K(u1/h, u2/h)/h
2 for a

bivariate kernel function K(·), and a bandwidth parameter h.
In practice, it is often important to first standardize each dimension of the bivariate location score

Xi = (X1i, X2i)
⊤, and in some applications it may also be useful to allow for different bandwidths

for control and treatment groups. Thus, the function rd2d() allows for four different bandwidths:
h01 is used for X1i and control units, h02 is used for X2i and control units, h11 is used for X1i

and treatment units, and h02 is used for X2i and treatment units. The data-driven bandwidth
selection function rdbw2d() also allows for both standardization of each dimension of Xi (via the
option stdvar=TRUE) and different bandwidth selection for control and treatment regions (via the
options bwselect="msetwo" or bwselect="imsetwo"). Thus, the function rdbw2d() can report up
to four distinct estimated bandwidths: (ĥ01, ĥ02, ĥ11, ĥ11) corresponding to (h01, h02, h11, h11). The
discussion in this article focuses on a single common bandwidth h for simplicity, but we explain how
different MSE-optimal bandwidth are estimated as appropriate. In addition, while the notation does
not explicitly reflect clustering, which is a common feature in geographic and other multidimensional
RD designs, the package rd2d allows for cluster-robust inference as explained below.

2.1.1 Point Estimation, MSE Expansions, and Bandwidth Choices

Under minimal regularity conditions, the bivariate location-based treatment effect estimator τ̂(x) is
pointwise and uniform consistent for the treatment effect curve τ(x) along the assignment boundary:
τ̂(x) →P τ(x) for each x ∈ B, and supx∈B |τ̂(x) − τ(x)| →P 0, where →P denotes convergence in
probability as h → 0 and nh2 → ∞. Furthermore, under similar regularity conditions, precise
(conditional) MSE expansions can be established along B, which can then be used for principled
bandwidth selection.

The pointwise (conditional) MSE expansion is

E[(τ̂(x)− τ(x))2|X] ≈P
1

nh2
Vx + h2(p+1)B2

x,

where Vx = V1,x + V0,x and Bx = B1,x − B0,x denote the fixed-n conditional variance and the
leading conditional bias of the treatment effect estimator, respectively, and ≈P denotes equality in
probability up to vanishing higher-order terms. More precisely, using standard multi-index notation
and least squares algebra, the fixed-n conditional variance and leading conditional bias for each
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group t ∈ {0, 1} are

Vt,x = e⊤1 Γ̂
−1

t,xΣt,x,xΓ̂
−1

t,xe1 and Bt,x =
∑

|k|=p+1

µ
(k)
t (x)

k!
e⊤1 Γ̂

−1

t,xϑ̂t,x(k),

respectively, where

Γ̂t,x =
1

n

n∑
i=1

rp
(Xi − x

h

)
rp
(Xi − x

h

)⊤
Kh(Xi − x)1(Xi ∈ At),

Σt,x,x =
h2

n

n∑
i=1

rp

(Xi − x

h

)
rp

(Xi − x

h

)⊤
Kh(Xi − x)2ε2i,t,x1(Xi ∈ At),

ϑ̂t,x(k) =
1

n

n∑
i=1

rp

(Xi − x

h

)(Xi − x

h

)k
Kh(Xi − x)1(Xi ∈ At),

and εi,t,x = Yi − 1(Xi ∈ At)µt(x).
Therefore, for each x ∈ B, and noting that Γ̂t,x, Σt,x,x, and ϑ̂t,x(k) converge in probability (as

nh2 → ∞) to well-defined limits independent on the bandwidth h, an MSE-optimal bandwidth
choice is

hMSE,x =
( 2Vx

(2p+ 2)B2
x

1

n

)1/(2p+4)
,

provided that Bx ̸= 0.
Similarly, given a weighting function w(x), an integrated MSE expansion is∫

B

E[(τ̂(x)− τ(x))2|X]w(x)dx ≈P h2(p+1)

∫
B

B2
xw(x)dx+

1

nh2

∫
B

Vxw(x)dx,

using the notation already introduced. Therefore, along B, an integrated MSE-optimal bandwidth
choice is

hIMSE =
( 2

∫
B
Vxw(x)dx

(2p+ 2)
∫
B
B2

xw(x)dx

1

n

)1/(2p+4)
,

provided that
∫
B
B2

xw(x)dx ̸= 0.
The basic MSE-optimal and IMSE-optimal bandwidth choices, hMSE,x and hIMSE, can be extended

to accommodate different selections for each coordinate of the bivariate location score and/or for con-
trol and treatment groups separately. Different bandwidths for each coordinate in Xi = (X1i, X2i)

⊤

are obtained by first standardizing each component, then applying the basic bandwidth rules, and
finally removing the standardization: letting X̃i = (X1i/σX1 , X2i/σX2)

⊤, where σ2
Xl

= V[Xli] for
l ∈ {1, 2}, then for each coordinate l ∈ {1, 2} the bandwidth selectors are

hl,MSE,x = σXl
· hMSE,x and hl,IMSE = σXl

· hIMSE,
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where hMSE,x and hIMSE are computed using the standardized bivariate location score X̃i (instead
of using the original score Xi). Different bandwidth selection for control and treatment groups are
obtained by implementing hMSE,x and hIMSE for each group t ∈ {0, 1} separately:

hMSE,t,x =
( 2Vt,x

(2p+ 2)B2
t,x

1

n

)1/(2p+4)
and hIMSE,t =

( 2
∫
B
Vt,xw(x)dx

(2p+ 2)
∫
B
B2

t,xw(x)dx

1

n

)1/(2p+4)
,

assuming the denominators are not zero.
A combination of the two ideas gives four distinct MSE-optimal and IMSE-optimal bandwidth

selection rules: (σX1 · hMSE,0,x, σX2 · hMSE,0,x, σX1 · hMSE,1,x, σX2 · hMSE,1,x) and (σX1 · hIMSE,0, σX2 ·
hIMSE,0, σX1 · hIMSE,1, σX2 · hIMSE,1), respectively. For implementation, the package rd2d employs
the following options:

Option Bandwidth Selection
stdvar bwselect Score Coordinates Treatment Groups Default
TRUE mserd Distinct Same Yes
FALSE mserd Same Same No
TRUE msetwo Distinct Distinct No
FALSE msetwo Same Distinct No

To implement the bandwidth selection procedures it is necessary to (i) estimate the unconditional
variances σ2

Xl
for standardization of each coordinate of Xi = (Xli : l = 1, 2)⊤, as needed; (ii)

estimate residuals εi,t,x entering the variances Vt,x for each group t ∈ {0, 1}; (iii) estimate higher-
order derivatives (µ

(k)
t (x) : |k| = p + 1) entering the bias Bt,x quantities for each group t ∈ {0, 1};

and (iv) select (preliminary) bandwidth entering the matrices Γ̂t,x, Σt,x,x, and ϑ̂t,x(k) for each
group t ∈ {0, 1}. (A data-driven regularization term is also added to the denominators to avoid
near-zero bias, as explained below.) These unknown quantities are estimated as follows.

• The unconditional variances used for standardization are estimated using their sample variance
counterparts: σ̂2

Xl
= 1

n−1

∑n
i=1(Xli − 1

n

∑n
i=1Xli)

2, for each coordinate l ∈ {1, 2}.

• Given a (preliminary) bandwidth, the package rd2d implements several variance estimators
for each group t ∈ {0, 1}: Vt,x is replaced by V̂t,x = e⊤1 Γ̂

−1

t,xΣ̂t,x,xΓ̂
−1

t,xe1, where Σ̂t,x,x is either
a heteroskedasticity-consistent (HC) or cluster-consistent (CR) variance estimator based on
replacing the unknown residuals εi,t,x with the plug-in residuals estimates

ε̂i,t,x = Yi −Rp(Xi − x)⊤β̂t(x).
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More precisely, the package allows for the following options:

Option Variance Implementation
vce cluster HC-estimate (cluster=NULL) or CR-estimate (cluster=varname)
hc0 NULL or varname no weighting of estimated residuals
hc1 NULL or varname degrees-of-freedom weighting of estimated residuals
hc2 NULL or varname inverse-diagonal-projection weighting of estimated residuals
hc3 NULL or varname inverse-diagonal-projection-squared weighting of estimated residuals

See Zeileis [2004] and Zeileis et al. [2020] for more discussion.

• Given a (preliminary) bandwidth, the package rd2d estimate the higher-order curvature of the
unknown conditional expectations, µ(k)

t (x) and µ
(k)
1 (x) for each k ∈ N2 such that |k| = p+1,

using a higher-order polynomial approximation. By default, a local polynomial regression of
order q = p+ 1 is used.

• The preliminary bandwidth(s) needed to construct the matrices Γ̂t,x, Σt,x,x, and ϑ̂t,x(k), as
well as the plug-in residuals and higher-order derivative estimates, are selected using a combi-
nation of ROT and DPI-2 methods. Specifically, two bandwidth are sequentially constructed
as follows:

Step 1. Using a Gaussian distribution reference model, construct a plug-in IMSE-optimal ROT
bandwidth selector for the canonical kernel density estimator of fX(x), the Lebesgue
density of score. The resulting data-driven bandwidth choice is:

ĉ = Ĉn−1/6,

where Ĉ is a function of the variance of Xi and known constants determined by the
kernel function used. This preliminary bandwidth choice is motivated by the fact that
Γ̂t,x →P fX(x)Γt,x and ϑ̂t,x(k) →P fX(x)ϑt,x(k), where Γt,x and ϑt,x(k) are non-random
matrices, only function of B, K, p, |k| = p+ 1, and t ∈ {0, 1}.

Step 2. Construct an MSE-optimal bandwidth choice for estimating the linear combination given

by
∑

|k|=p+1
µ
(k)
t (x)
k! e⊤1 Γ̂

−1

t,xϑ̂t,x(k), using a qth order local polynomial estimator and the

bandwidth ĉ for the coefficients e⊤1 Γ̂
−1

t,xϑ̂t,x(k). To implement this bandwidth choice, ĉ
is used for variance estimation, and a preliminary nearest-neighbor-based polynomial re-
gression approximation is used for bias estimation. The resulting data-driven bandwidth
choice is:

b̂t = Ĉtn
−1/(2q+4), t ∈ {0, 1},

where Ĉt depends on the variance and bias estimates for the target linear combination,
and K and q.
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Step 3. Construct the final variance and bias constants using the preliminary bandwidth es-
timates (ĉ, b̂0, b̂1). Specifically, the basic MSE-optimal (or IMSE-optimal) bandwidth
choice is implemented as follows: for each t ∈ {0, 1},

– Vt,x is replaced by V̂t,x, where ĉ is used to construct the matrices, and a pth order
local polynomial regression is used for residual estimation; and

– Bt,x is replaced by B̂t,x, where ĉ is used to construct the matrices, and b̂t is used to
estimate the derivatives of the regression function for each group.

See Wand and Jones [1994] and Härdle et al. [2004] for technical details.

2.1.2 Statistical Inference

To assess uncertainty in the estimation of the causal effects τ(x) along the boundary B, we consider
the usual Wald-type test statistic

T(x) =
τ̂(x)− τ(x)√

V̂x/(nh2)
, x ∈ B,

where τ̂(x) and V̂x are constructed using the polynomial order p and bandwidth h, after choosing
the appropriate HC and CR variance estimator, as explained above in the context of bandwidth
selection.

In practice, the bandwidth is chosen to be (I)MSE-optimal, and thus the sampling distribution
of the statistic satisfies the following pointwise distributional approximation:

T(x)− Bias(x) a∼ N(0, 1), Bias(x) =
hp+1Bx√
V̂x/(nh2)

, x ∈ B,

where a∼ denote an approximation in distribution as nh2 → ∞, N(0, 1) denotes the standard Gaus-
sian distribution, and Bias(x) denotes the standardized leading bias emerging whenever a “large”
bandwidth is used (i.e., when the (I)MSE-optimal bandwidth is used, or any other bandwidth choice
such that Bias(x) ̸→P 0). The standard confidence interval estimator with 100(1 − α)% nominal
coverage is

CI(x) =

[
τ̂(x)± Φ1−α/2

√
V̂x/(nh2)

]
, x ∈ B,

where Φα is the αth quantile of the standard Gaussian distribution. However, for “large” bandwidths
such as the (I)MSE-optimal choice, CI(x) will be invalid due to the bias Bias(x), thereby delivering
empirical coverage well below its nominal target. A solution to this problem is to employ ad-
hoc undersmoothing, that is, to implement CI(x) with a “smaller” bandwidth h relative to the
(I)MSE-optimal choice. Calonico et al. [2018, 2022] showed that undersmoothing is sub-optimal
(possibly invalid) under standard assumptions, while the robust bias-correction (RBC) methodology
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introduced by Calonico et al. [2014] enjoys validity and better (in some cases optimal) higher-order
distributional properties. The core idea behind the RBC approach can be summarized as follows:
(i) employ the (I)MSE-optimal bandwidth for constructing the point estimator τ̂(x), (ii) de-bias
(bias correct) the numerator of the statistic T(x), and (iii) adjust the variance estimate to account
for the variability introduced by the debiasing of τ̂(x).

The implementation of the RBC inference methodology is straightforward: given a chosen (I)MSE-
optimal bandwidth for the pth order local polynomial point estimator τ̂(x), an adjsted test statistic
is constructed using a qth order local polynomial point estimator τ̂q(x) and its associated variance
estimate V̂x,q, with q > p. Thus, the approach employs the RBC statistic Tq(x) = (τ̂q(x) −

τ(x))/
√
V̂x,q/(nh2), instead of the original statistic T(x) above. The resulting RBC confidence

interval estimator is

CIq(x) =

[
τ̂q(x)± Φ1−α/2

√
V̂x,q/(nh2)

]
, x ∈ B,

which is constructed with an (I)MSE-optimal bandwidth choice for the pth order local polynomial
point estimator τ̂(x). (This amounts to a form of robust bias correction because τ̂q(x) = τ̂(x) −
hp+1B̂x, where B̂(x) is an “estimate” of Bx.) The package rd2d employs p = 1 and q = 2 as defaults,
which are standard choices for implementation.

Uniform inference and confidence bands along the boundary B also employ RBC methodology.
Specifically, given an (I)MSE-optimal bandwidth for the pth order local polynomial point estimator
τ̂(x), the associated RBC confidence band estimate is

CBq(B) =

{[
τ̂q(x)± qα

√
V̂x,q/(nh2)

]
: x ∈ B

}
,

where qα denotes a suitably chosen quantile to control false rejections uniformly over B. In practice,
the continuous assignment boundary is discretized to consider the J cutoff in b = (b1, · · · ,bJ)

⊤

jointly. Then, a feasible quantile choice is

qα = inf

{
u ≥ 0 : P

[
max
1≤j≤J

∣∣e⊤j Ĉ1/2
b,qZ

∣∣ ≥ u
∣∣∣Data

]
≤ α

}
,

where the J-dimensional standard Gaussian vector Z ∼ N(0J , IJ) is independent of the data, and
the (J × J) covariance matrix Ĉb,q =

[
V̂bj ,bk

/(V̂bj ,bj
V̂bk,bk

)1/2 : 1 ≤ j, k ≤ J
]

where V̂bj ,bk
=

V̂1,bj ,bk
+ V̂0,bj ,bk

with

Vt,bj ,bk
= e⊤1 Γ̂

−1

t,bj
Σ̂t,bj ,bk

Γ̂
−1

t,bk
e1

and

Σ̂t,bj ,bk
=

h2

n

n∑
i=1

rq

(Xi − bj

h

)
rq

(Xi − bk

h

)⊤
Kh(Xi − bj)Kh(Xi − bk)ε̂i,bj

ε̂i,bk
1(Xi ∈ At)
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with ε̂i,t,x = Yi−Rq(Xi−x)⊤β̂t(x), for t ∈ {0, 1}. This formulation is robust to unknown conditional
heteroskedasticity, while the clustered-robust analogue formula is omitted to save space; see Zeileis
[2004] and Zeileis et al. [2020].

The RBC method produces confidence intervals/bands that are not centered at the treatment
effect point estimator because different polynomial orders are used for estimation and inference. As
a result, the point estimates may lie outside the RBC confidence intervals/bands, particularly if the
underlying treatment effect curve τ(x) exhibits high curvature at certain evaluation points. One
possible solution is to increase the polynomial orders p and q, or to use a bandwidth smaller than
the (I)MSE-optimal one.

2.1.3 Regularization Strategies

The package rd2d implements several regualization schemes to ensure robustness in applications.

• Small bias regularization. Ignoring the asymptotically constant and higher-order terms, the ap-
proximate MSE-optimal and IMSE-optimal bandwidth choices require Bx ̸= 0 and

∫
B
B2

xω(x)dx ̸=
0, respectively. Thus, a small estimated bias can result in a bandwidth that is too large. To
avoid this problem, a regularization term is added to the term of estimated bias, leading to
the regularized MSE-optimal bandwidth choice,

hMSE,x =
( 2V̂x

(2p+ 2)(B̂2
x + s · V[B̂x])

1

n

)1/(2p+4)
, x ∈ B,

and the regularized IMSE-optimal bandwidth choice,

hIMSE =
( 2

∫
B
V̂xdx

(2p+ 2)(
∫
B
B̂2

x + s · V[B̂x]dx)

1

n

)1/(2p+4)
.

where the regularization terms account for variance of the bias estimator, and are estimated
as discussed previously. The factor s, defaulted to 3, controls the degree of regularization

• Minimum sample size. A sample size of at least bwcheck is required by (possibly) enlarging
the selected/provided bandwidth until bwcheck number of observations are included in the
estimation region. The default is bwcheck = 50 + (2 + p)(1 + p)/2 − 1. When kernel type is
"prod", a smallest rectangle centered at the evaluation point with two edges proportional to
(σ(Xi1), σ(Xi2)), σ stands for the standard deviation, is found, and the bandwidth for local
polynomial fitting should allow the smallest rectangle to be contained in its resulting kernel.
When kernel type is "rad", a smallest ball centered at evaluation point with bwcheck number
of data points is found, and the bandwidth is increased until its resulting kernel contains the
smallest ball.

• Mass points in Xi. The masspoint option checks for unique number of points in the data.
The default is masspoint = "check", where unique number of data points is reported, and
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a warning is issued if duplication exceeds 20% of the data. When masspoint = "adjust",
bandwidths are regularized so that the resulting kernels contain a minimal number of unique
observations (see minimum sample size). When masspoint = "off", the potential presence
of mass points is ignored.

2.2 Aggregated Average Treatment Effects Along the Boundary

For a weight function w : B → [0,∞), the aggregated average treatment effect (AATE) along the
boundary B is

τAATE,B =

∫
B
τ(b)w(b) db∫
B
w(b) db

A choice of weight function recovers a scalar causal effect, aggregating potential heterogeneous
treatment effects along the boundary. Estimation and inference methods for this class of causal
parameters can be deduced from our results. For example, consider the generic plug-in “estimator”
of τAATE,B given by

τ̂AATE,b =

∑J
j=1 τ̂(bj)w(bj)∑J

j=1w(bj)
,

where the cutoff points b = (b1, . . . ,bJ)
⊤ along the assignment boundary are assumed to be evenly-

spaced over B, and τ̂(bj) is constructed using pth order local polynomial fits. It follows that the
IMSE-optimal bandwidth choice is more natural. Feasible RBC confidence intervals are

CIq(AATE) =
[
τ̂AATE,b,q ± Φ1−α/2

√
w⊤V̂b,qw

nh2

]
,

where τ̂AATE,b,q is the point estimator τ̂AATE,b constructed using a qth order polynomial basis,
V̂b,q =

[
V̂bj ,bk

: 1 ≤ j, k ≤ J
]

denotes its associated variance estimator, as explained previously,
and w = (w(b1), . . . , w(bJ))

⊤/(
∑J

j=1w(bj)) is the user-chosen vector of weights. In rd2d, AATE
estimation and inference are implemented via the optional argument AATE = w in the summary()

method for rd2d objects.

2.3 Distance-Based Methods

For each unit i = 1, . . . , n, their scalar distance-based score to the boundary point x = (x1, x2)
⊤ ∈ B

is Di(x) = (2Ti − 1)d(Xi,x), where d(·, ·) denotes a distance function such as the Euclidean
distance d(Xi,x) = ∥Xi−x∥ =

√
(X1i − x1)2 + (X2i − x2)2. Therefore, for each x ∈ B, the setup

reduces to a standard univariate RD design with distance score Di(x) ∈ R and cutoff c = 0, the
observed data now being (Y1, D1(x)), · · · , (Yn, Dn(x)) for each point on the assignment boundary
b = (b1, · · · ,bJ)

⊤.
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The distance-based local polynomial treatment effect curve estimator of τ(x) is

τ̂dis(x) = e⊤1 γ̂1(x)− e⊤1 γ̂0(x), x ∈ B,

where, for t ∈ {0, 1},

γ̂t(x) = argmin
γ∈Rp+1

1

n

n∑
i=1

(
Yi − rp(Di(x))

⊤γ
)2
kh(Di(x))1(Di(x) ∈ It),

with rp(u) = (1, u, u2, · · · , up)⊤ the usual univariate polynomial basis, kh(u) = k(u/h)/h2 for
univariate kernel function k(·) and bandwidth parameter h, and I0 = (−∞, 0) and I1 = [0,∞).
Cattaneo et al. [2025] studied the statistical properties of the distance-based approach in boundary
discontinuity designs, and obtained the following main results (under regularity conditions).

1. Consistency. As h → 0 and nh2 → ∞, τ̂dis(x) →P τdis(x) for all x ∈ B, and supx∈B |τ̂dis(x)−
τdis(x)| →P 0, where τdis(x) = limr↓0 θ1,x(r)− limr↑0 θ0,x(r) with

θt,x(r) = E
[
Yi
∣∣Di(x) = r,Di(x) ∈ It

]
= E

[
Yi(t)

∣∣d(Xi,x) = |r|
]
,

for x ∈ B and t ∈ {0, 1}. The functions θt,x(r) are the univariate induced conditional
expectations based on distance to the boundary point x ∈ B for each group t ∈ {0, 1}.

2. Identification. τ(x) = τdis(x) for all x ∈ B, thereby showing that the distance-based estimator
is a valid treatment effect estimator.

3. Bias. If the assignment boundary B is non-smooth, then the uniform bias of the estimator
τ̂dis(x) along the boundary is no better than of order h, regardless of the polynomial order p

used. In other words, the distance-based estimator exhibits a “large” bias near kinks or other
irregularities of the assignment boundary B. On the other hand, if the assignment boundary
B is smooth enough, then the bias of τ̂dis(x) is of order hp+1 as expected in local polynomial
regression settings.

4. Mean Square Convergence and Bandwidth Choice. Due to unknown form of distance function
d(·, ·) and the assignment boundary B, it is not possible to obtain valid (I)MSE expansions
and precise bandwidth selection rules. At this level of generality, only bandwidth selection in
terms of rates can be established:

• If B is smooth, then h ≍ n−1/(2p+4) is (I)MSE rate-optimal, where ≍ denotes up to a
proportional constant.

• If B is non-smooth, then h ≍ n−1/4 is (I)MSE rate-optimal, regardless of the polynomial
order p used in constructing τ̂dis(x).

5. Statistical Inference. Putting aside the issue of “large” bias whenever B is non-smooth, valid
confidence intervals/bans can be developed based on the distance-based estimator. The same

14



inference results outlined for the location-based approach are available for the distance based
approach, with some important caveats:

• If B is smooth, then RBC inference is possible. Thus, first the (I)MSE-rate-optimal
bandwidth h ≍ n−1/(2p+4) is used for point estimation (i.e., τ̂dis(x)) using pth order local
polynomial regression, and then inference proceeds using qth order local polynomial
regression. This is implemented using the option kink = "off", and is the default for
rd2d.dist().

• If B is non-smooth, then the RBC inference is not possible because the leading bias
is unknown and increasing the polynomial order does not reduce bias. In this case,
point estimation employs the (I)MSE-rate-optimal bandwidth h ≍ n−1/4, and then in-
ference employs the undersmoothed bandwidth choice h ≍ n−1/3 following the results in
Calonico et al. [2018, 2022]. As a result, point estimation and inference employ the same
polynomial order (p = q).

Other implementation and regularization methods follow the same logic as for bivariate location-
based estimation, taking into account the distance variable explicitly. In particular, bwcheck =

50 + p + 1 is used as default. See Cattaneo et al. [2025] for omitted technical and methodological
details.

3 Numerical Illustrations

We illustrate the capabilities of the general-purpose R software package rd2d with a synthetic dataset
of size n = 20, 000 calibrated using the Ser Pilo Paga (SPP) dataset [Londoño-Vélez et al., 2020].
We set Ti = 1(X1i ≥ 0, X2i ≥ 0), where Ti = 1 indicates unit i is in the treatment group, and
Ti = 0 indicates unit i is in the control group. Covariates Xi = (X1i, X2i)

⊤ are drawn from the
product distribution (100Beta(3, 4) − 25,B2 = 100Beta(3, 4) − 25) with independent components.
Potential outcomes are generated by

Yi(t) = βt,0 +X1iβt,11 +X2iβt,12 +X2
1iβt,21 +X2

2iβt,22 +X1iX2iβt,23 + εt,i,

where Xi, ε0,i and ε1,i are mutually independent, and εt,i ∼ N(0, σ2
t ), for i = 1, 2, · · · , n and t = 0, 1.

We consider two DGPs as in Table 1, where coefficients are estimated from the Ser Pilo Paga (SPP)
dataset [Londoño-Vélez et al., 2020], and scaled by a factor of 2 to enhance signal strength.

Figure 2a presents a scatterplot of a synthetic dataset constructed using the data generating
process described above, which we use for numerical illustration of the main capabilities of the
package rd2d. The gray assignment boundary separates the control (blue) and treatment (red)
groups. The plot also includes forty grid points along the boundary, where the cutoff b21 is a kink
point. Figure 2b presents the population treatment effects corresponding to the two data generating
processes. To demonstrate the variability in the outcome variable, the figure includes synthetic data
points derived from 300 uniform draws along the boundary.
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DGP 1 (Linear) DGP 2 (Quadratic)

t = 0 t = 1 t = 0 t = 1

βt,0 2× 3.35× 10−1 2× 6.98× 10−1 2× 3.72× 10−1 2× 7.435× 10−1

βt,11 2× 2.52× 10−3 2× 2.74× 10−3 2× 4.23× 10−3 2× 2.29× 10−3

βt,12 −2× 1.72× 10−3 −2× 6.05× 10−4 −2× 2.45× 10−3 −2× 5.85× 10−3

βt,21 0 0 2× 1.25× 10−5 −2× 1.33× 10−7

βt,22 0 0 −2× 4.92× 10−6 2× 2.14× 10−5

βt,23 0 0 2× 3.12× 10−5 2× 1.04× 10−4

σt 3.32× 10−1 4.35× 10−1 3.31× 10−1 4.35× 10−1

Table 1: True parameter values for DGP 1 (Linear) and DGP 2 (Quadratic) under treatment
statuses t = 0 and t = 1, fitted from the Ser Pilo Paga (SPP) dataset [Londoño-Vélez et al., 2020]
and coefficients boosted by 2.

(a) Scatter Plot of (X1i, X2i) (b) Treatment Effects Along the Boundary

Figure 2: Estimation and Inference (Simulations).

3.1 Function rd2d()

The function rd2d() provides point estimation, robust confidence intervals, and robust uniform
confidence bands for (derivatives of) treatment effect function τ(x) based on bivariate location-
based local polynomial regression. It takes as input an outcome vector y, a bivariate location score
matrix X, a treatment indicator vector t, and a grid of evaluation points b along the boundary B.

Optional arguments include bandwidth choices h, degrees of polynomial for point estimation (p)
and inference (q), the partial derivative of treatment effect to be estimated deriv, and confidence
level level. When optional arguments are not provided, the function defaults to estimate the
value of treatment effect deriv = c(0,0) using the MSE-optimal bandwidth, with p = 1 degree
polynomial for point estimation and q = 2 degree polynomial for robust bias-corrected confidence
interval (and bands if requested), and level = 95 percentage points confidence level. Additionally,
kernel_type indicates whether a product kernel ("prod") or a radial kernel ("rad") is used for
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weighting. The default is kernel_type = "prod".
Below is a demonstration of rd2d() applied on the synthetic dataset, with results for selected

indices printed using the summary() method.

> result.rd2d <- rd2d(y, X, t, eval)
> summary(result.rd2d , subset = c(1,5,10,15,21,25,30,35,40))
rd2d

Number of Obs. 20000
BW type. mserd -dpi -std
Kernel triangular -prod
VCE method hc1
Masspoints check

Number of Obs. 6191 13809
Estimand (deriv) 0 0
Order est. (p) 1 1
Order rbc. (q) 2 2
Unique Obs. 6191 13809

====================================================================
ID b1 b2 Est. z P>|z| 95% CI

====================================================================
1 0.000 50.000 0.8143 9.8761 0.0000 [0.6191 , 0.9257]
5 0.000 40.000 0.7298 11.8383 0.0000 [0.6125 , 0.8556]

10 0.000 27.500 0.6752 11.3927 0.0000 [0.5487 , 0.7767]
15 0.000 15.000 0.6456 13.4458 0.0000 [0.5448 , 0.7307]
21 0.000 0.000 0.6890 8.8464 0.0000 [0.5294 , 0.8307]
25 10.000 0.000 0.6647 14.1815 0.0000 [0.5492 , 0.7254]
30 22.500 0.000 0.6116 11.5752 0.0000 [0.5049 , 0.7107]
35 35.000 0.000 0.5722 8.6064 0.0000 [0.4110 , 0.6534]
40 47.500 0.000 0.5120 6.2842 0.0000 [0.3354 , 0.6393]

====================================================================

Listing 1: Functionality of rd2d()

The first part of the output provides basic information on the options specified in the function.
For example, the default estimand is the value of treatment effect, indicated by deriv = (0,0).
The rest of the output gives estimation results, including (i) b1 and b2: First and second coordinate
of the evaluation points; (ii) Coef.: Point estimation of (derivative) of treatment effect using p =

p polynomial order; and (iii) t-statistics, (iv) p-value, and (v) level% confidence intervals using
q = q polynomial order. When q > p, the resulting inference procedures correspond to robust
bias correction [Calonico et al., 2014, 2018, 2022], which is the default and recommended method;
p = q corresponds to standard least squares methods. Point estimates, standard errors, and other
information can be easily extracted for further statistical analysis. The output is stored in a standard
matrix, and can be accessed with the following command,

> result.rd2d$results
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> result.rd2d$results.A0
> result.rd2d$results.A1

Listing 2: Output matrices of rd2d()

where result.rd2d$main.A0 contains results for the control group, result.rd2d$main.A1 contains
results for the treatment group, and result.rd2d$main contains results for both.

The summary() method allows for three optional arguments. First, the option subset takes the
indices of evaluation points to be presented, which should be a subset of c(1:nrow(eval)). The
default is NULL, and thus all evaluation points are presented. Second, CBuniform is boolean variable
for confidence bands construction, where FALSE indicates that pointwise confidence intervals are
provided, and TRUE indicates uniform confidence bands are provided. The default is CBuniform =

FALSE.

> summary(result.rd2d , subset = c(1,5,10,15,21,25,30,35,40), CBuniform = TRUE)
rd2d

Number of Obs. 20000
BW type. mserd -dpi -std
Kernel triangular -prod
VCE method hc1
Masspoints check

Number of Obs. 6191 13809
Estimand (deriv) 0 0
Order est. (p) 1 1
Order rbc. (q) 2 2
Unique Obs. 6191 13809

====================================================================
ID b1 b2 Est. z P>|z| 95% Unif. CB

====================================================================
1 0.000 50.000 0.8143 9.8761 0.0000 [0.5322 , 1.0126]
5 0.000 40.000 0.7298 11.8383 0.0000 [0.5436 , 0.9245]

10 0.000 27.500 0.6752 11.3927 0.0000 [0.4841 , 0.8414]
15 0.000 15.000 0.6456 13.4458 0.0000 [0.4920 , 0.7834]
21 0.000 0.000 0.6890 8.8464 0.0000 [0.4439 , 0.9161]
25 10.000 0.000 0.6647 14.1815 0.0000 [0.4993 , 0.7753]
30 22.500 0.000 0.6116 11.5752 0.0000 [0.4465 , 0.7690]
35 35.000 0.000 0.5722 8.6064 0.0000 [0.3423 , 0.7221]
40 47.500 0.000 0.5120 6.2842 0.0000 [0.2492 , 0.7255]

====================================================================

Listing 3: Functionality of rd2d() with CBuniform = TRUE

When the optional argument AATE =
(
wj

)J
j=1

, representing the weights for the evaluation points
{bj}Jj=1, is supplied to summary(), the output gains an extra row labeled “AATE.” This row reports
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the aggregated average treatment effect estimator

τ̂AATE =

∑J
j=1wj τ̂

(
bj
)∑J

j=1wj

,

along with its inference statistics.

> summary(result.rd2d , subset = c(1,5,10,15,21,25,30,35,40), AATE = rep(1,neval))
rd2d

Number of Obs. 20000
BW type. mserd -dpi -std
Kernel triangular -prod
VCE method hc1
Masspoints check

Number of Obs. 6191 13809
Estimand (deriv) 0 0
Order est. (p) 1 1
Order rbc. (q) 2 2
Unique Obs. 6191 13809

====================================================================
ID b1 b2 Est. z P>|z| 95% CI

====================================================================
1 0.000 50.000 0.8143 9.8761 0.0000 [0.6191 , 0.9257]
5 0.000 40.000 0.7298 11.8383 0.0000 [0.6125 , 0.8556]

10 0.000 27.500 0.6752 11.3927 0.0000 [0.5487 , 0.7767]
15 0.000 15.000 0.6456 13.4458 0.0000 [0.5448 , 0.7307]
21 0.000 0.000 0.6890 8.8464 0.0000 [0.5294 , 0.8307]
25 10.000 0.000 0.6647 14.1815 0.0000 [0.5492 , 0.7254]
30 22.500 0.000 0.6116 11.5752 0.0000 [0.5049 , 0.7107]
35 35.000 0.000 0.5722 8.6064 0.0000 [0.4110 , 0.6534]
40 47.500 0.000 0.5120 6.2842 0.0000 [0.3354 , 0.6393]

--------------------------------------------------------------------
AATE 0.6534 28.9598 0.0000 [0.5987 , 0.6856]
====================================================================

Listing 4: Functionality of rd2d() for AATE

Finally, the summary() method allows for presenting the underlying bandwidths used and asso-
ciated effective sample sizes via the option output = "bw".

> summary(result.rd2d , subset = c(1,5,10,15,21,25,30,35,40), output = "bw")
rd2d

Number of Obs. 20000
BW type. mserd -dpi -std
Kernel triangular -prod
VCE method hc1
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Masspoints check

Number of Obs. 6191 13809
Estimand (deriv) 0 0
Order est. (p) 1 1
Order rbc. (q) 2 2
Unique Obs. 6191 13809

====================================================================
Bdy Points BW Control BW Treatment Eff. N

ID b1 b2 h01 h02 h11 h12 Nh0 Nh1
====================================================================

1 0.000 50.000 16.687 16.717 16.687 16.717 689 1295
5 0.000 40.000 14.782 14.808 14.782 14.808 1019 1810

10 0.000 27.500 12.736 12.759 12.736 12.759 1252 2108
15 0.000 15.000 12.045 12.067 12.045 12.067 1295 2167
21 0.000 0.000 14.740 14.766 14.740 14.766 2169 1552
25 10.000 0.000 12.455 12.477 12.455 12.477 1467 1980
30 22.500 0.000 11.476 11.496 11.476 11.496 1107 1843
35 35.000 0.000 11.595 11.615 11.595 11.615 824 1418
40 47.500 0.000 14.961 14.987 14.961 14.987 638 1242

====================================================================

Listing 5: Functionality of rd2d() with output = "bw"

3.2 Function rdbw2d()

The function rdbw2d() is used for MSE (or IMSE) optimal bandwidth implementation, and is used
internally in rd2d() when user does not specify bandwidth choices manually. The function takes
the same input data as rd2d(), that is, an outcome vector y, a bivariate location score matrix X, a
treatment indicator vector t, and a grid of evaluation points b along the boundary B. In addition,
the option bwselect encodes four options of bandwidth type: (i) "mserd" finds the MSE-optimal
bandwidth for estimating (derivatives of) treatment effect, (ii) "imserd" finds the integreated MSE
optimal bandwidth for estimating (derivatives of) treatment effect, (iii) "msetwo" finds the MSE
optimal bandwidth for estimation (the derivatives of) conditional means of two potential outcome
variables, (iv) "imsetwo" finds the integrated MSE optimal bandwidth for estimation (the deriva-
tives of) conditional means of two potential outcome variables. The default is bwselect = "mserd".
An additional Boolean argument stdvar indicates whether the covariates are first standardized to
unit standard deviation in each coordinate, in which case the optimal bandwidth is estimated and
then converted back to the original scale. The default is stdvar = TRUE.

> bws.rd2d <- rdbw2d(y, X, t, eval)
> summary(bws.rd2d ,subset = c(1,5,10,15,21,25,30,35,40))
Call: rdbw2d

Number of Obs. 20000
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BW type. mserd -dpi
Kernel triangular -prod
VCE method hc1
Masspoints check
Standardization on

Number of Obs. 6191 13809
Estimand (deriv) 0 0
Order est. (p) 1 1
Unique Obs. 6191 13809

Bandwidth Selection
====================================================

Bdy Points BW Control BW Treatment
ID b1 b2 h01 h02 h11 h12

====================================================
1 0.000 2.855 20.552 20.588 20.552 20.588
5 0.000 2.284 18.668 18.701 18.668 18.701

10 0.000 1.570 16.476 16.505 16.476 16.505
15 0.000 0.856 14.098 14.123 14.098 14.123
21 0.000 0.000 19.115 19.149 19.115 19.149
25 0.572 0.000 15.737 15.765 15.737 15.765
30 1.287 0.000 14.000 14.025 14.000 14.025
35 2.002 0.000 13.562 13.586 13.562 13.586
40 2.717 0.000 18.798 18.832 18.798 18.832

====================================================

Listing 6: Functionality of rdbw2d()

The first part of the summary output lists the options used for bandwidth selection. The second
part of the summary output gives bandwidth selection results, including: (i) Boundary points, b1
for the first coordinate and b2 for the second coordinate; (ii) Bandwidths for control group, h01 for
the first coordinate and h02 for the second coordinate; (iii) Bandwidths for treatment group, h11
for the first coordinate and h12 for the second coordinate.

3.3 Function rd2d.dist()

The function rd2d.dist() provides point estimation and inference for boundary treatment effects
using distance-based univariate local polynomial regression. It takes as input an outcome vector
y, and a signed distance matrix D of distance to each boundary point, where each column of D

corresponds to the signed distance from all observations to one evaluation point, with a positive
sign indicating the unit is in the treatment group and a negative sign indicating the unit is in the
control group.

Optional arguments include evaluation points b, bandwidth choices h, degrees of polynomial
for point estimation (p) and inference (q), option for kink adjustment kink, and confidence level
level, among other options. When not provided, the function defaults to estimate the value
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of treatment effect using the MSE-optimal bandwidth without kink adjustment (kink = "off"),
using p = 1 degree polynomial for point estimation and q = 2 degree polynomial for robust bias-
corrected confidence intervals and bands, providing level = 95% confidence interval and uniform
confidence bands, and without displaying of evaluation points (b = NULL).

> result.dist <- rd2d.dist(y,D, b = eval)
> summary(result.dist , subset = c(1,5,10,15,21,25,30,35,40))
rd2d.dist

Number of Obs. 20000
BW type mserd -rot
Kernel triangular -rad
VCE method hc1
Masspoints check

Number of Obs. 6191 13809
Estimand (deriv) 0 0
Order est. (p) 1 1
Order rbc. (q) 2 2

====================================================================
ID b1 b2 Est. z P > |z| 95% CI

====================================================================
1 0.000 50.000 0.8371 11.5847 0.0000 [0.6514 , 0.9167]
5 0.000 40.000 0.7307 9.4650 0.0000 [0.5807 , 0.8840]

10 0.000 27.500 0.6572 9.7763 0.0000 [0.5123 , 0.7692]
15 0.000 15.000 0.6272 7.7001 0.0000 [0.4344 , 0.7311]
21 0.000 0.000 0.7426 6.8180 0.0000 [0.5056 , 0.9136]
25 10.000 0.000 0.6301 11.2414 0.0000 [0.5474 , 0.7785]
30 22.500 0.000 0.6109 7.3862 0.0000 [0.4337 , 0.7470]
35 35.000 0.000 0.5768 6.4730 0.0000 [0.3668 , 0.6855]
40 47.500 0.000 0.4654 6.7582 0.0000 [0.3602 , 0.6544]

====================================================================

Listing 7: Functionality of rd2d.dist()

The first part of the summary output provides basic information on the options specified in the
function. The rest of the summary output gives estimation and inference results, including: (i)
b1 and b2 (when b is provided) report first and second coordinates of the evaluation points; (ii)
Coef. reports the treatment effect estimate using a pth order polynomial regression; and (iii) the
last three columns correspond to t-statistic, p-value and level% confidence intervals using qth
order polynomial regression. The summary() method also has the option of displaying the uniform
confidence bands (instead of the confidence intervals) in the last two columns as follows (numerical
results omitted to conserve space).

> summary(result.dist , subset = c(1,5,10,15,21,25,30,35,40), CBuniform = TRUE)

Listing 8: Functionality of rd2d.dist() with CBuniform = TRUE
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When the optional argument AATE =
(
wj

)J
j=1

, representing the weights for the evaluation points
{bj}Jj=1, is supplied to summary(), the output gains an extra row labeled “AATE” for estimation
and inference of aggregated average treatment effect.

> summary(result.dist , subset = c(1,5,10,15,21,25,30,35,40), AATE = rep(1,neval))

Listing 9: Functionality of rd2d() for AATE

In addition, The summary() method can also display the underlying bandwidths and effective
samples sizes as follows (numerical results omitted to conserve space).

> summary(result.dist , subset = c(1,5,10,15,21,25,30,35,40), output = "bw")

Listing 10: Functionality of rd2d.dist() with output = "bw"

Point estimates, standard errors, and other information can be easily extracted for further sta-
tistical analysis. The output is stored in a standard matrix, and can be accessed with the following
command.

> result.dist$results
> result.dist$results.A0
> result.dist$results.A1

Listing 11: Output matrices of rd2d.dist()

result.dist$main.A0 contains results for the control group, result.dist$main.A1 contains results
for the treatment group, and result.dist$main contains results for both.

3.4 Function rdbw2d.dist()

The function rdbw2d.dist() is used to implement MSE (or IMSE) rate-optimal ROT bandwidth
selectors, and is used internally in rd2d.dist() when user does not provide bandwidths manually.
As for rdbw2d(), four bandwidth types are allowed, that is, bwselect can be "mserd", "imserd",
"msetwo" or "imsetwo".

> bws.dist <- rdbw2d.dist(y,D, b = eval)
> summary(bws.dist ,subset = c(1,5,10,15,21,25,30,35,40))
Call: rdbw2d.dist

Number of Obs. 20000
BW type mserd -rot
Kernel triangular -rad
Kink off
VCE method hc1
Masspoints check

Number of Obs. 6191 13809
Estimand (deriv) 0 0
Order est. (p) 1 1

Bandwidth Selection
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================================================
Bdy Points BW Control BW Treatment

ID b1 b2 h0 h1
================================================

1 0.000 50.000 32.918 32.918
5 0.000 40.000 22.071 22.071

10 0.000 27.500 20.899 20.899
15 0.000 15.000 14.455 14.455
21 0.000 0.000 14.381 14.381
25 10.000 0.000 19.712 19.712
30 22.500 0.000 14.041 14.041
35 35.000 0.000 16.722 16.722
40 47.500 0.000 27.499 27.499

================================================

Listing 12: Functionality of rdbw2d.dist()

An additional argument kink, taking values "off" or "on", indicates whether a kink adjustment is
made for estimation and inference. The default is kink = "off", but when kink = "on" is specified
then the bandwidth is shrank to account for lack of smoothness of the assignment boundary B.

> bws.dist <- rdbw2d.dist(y,D, kink = "on")
> summary(bws.dist ,subset = c(1,5,10,15,21,25,30,35,40))
Call: rdbw2d.dist

Number of Obs. 20000
BW type mserd -rot
Kernel triangular -rad
Kink on
VCE method hc1
Masspoints check

Number of Obs. 6191 13809
Estimand (deriv) 0 0
Order est. (p) 1 1

Bandwidth Selection
================================

BW Control BW Treatment
ID h0 h1

================================
1 14.421 14.421
5 9.670 9.670

10 9.156 9.156
15 6.333 6.333
21 6.300 6.300
25 8.636 8.636
30 6.152 6.152
35 7.326 7.326
40 12.048 12.048
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================================

Listing 13: Functionality of rdbw2d.dist() with kink = "on"

3.5 Graphical Presentation

The package rd2d provides an array of estimation and inference results that can be used for graphical
presentation. Figure 3a compares three point estimation methods: (i) bivariate method via rd2d;
(ii) distance-based method via rd2d.dist, ignoring the kink (default argument kink = "off"); and
(iii) distance-based method via rd2d.dist, adjusting for kink (kink = "on"). Figure 3b plots point
estimation using the bivariate method, along with its associated robust bias-corrected confidence
intervals and confidence band. Figure 3c presents a heatmap of treatment effects along the boundary,
with high to low point estimation indicated by red to blue colors. Finally, Figure 3d presents a
heatmap of p-values along the boundary, with five colors assigned to five ranges of values. The
codes for generating the graphical presentations are given in the replication R file.

It can be seen that distance-based estimation with kink = "off" overshoots compared to the
bivariate estimation before the kink, and undershoots after the kink. This corresponds to the
phenomena of getting a first-order bias using distance based method in the presence of a kink,
despite using local polynomial regression of degree greater than or equal to 1. See Cattaneo et al.
[2025] for more methodological and theoretical discussions.

3.6 Simulation Evidence

The discussion so far employed one realization of the data generating process to illustrate the main
features of the package rd2d. In this final section, we conduct a Monte Carlo experiment to assess
the performance of the package in repeated sampling. We consider m = 1, 000 simulations of the
two data generating processes defined at the beginning of this section, and report the simulation
results in Table 2 (DGP 1: linear model) and Table 3 (DGP 2: quadratic model). Three meth-
ods are used and compared: the bivariate method rd2d, the distance-based method rd2d.dist

ignoring the presence of the kink in the boundary (kink = "off"), and the distance-based method
rd2d.dist adjusting for the kink (kink = "on"). Bandwidths are chosen automatically by the
package, and their average across simulations is reported. We also report diagnostic measures in-
cluding: bias, standard deviation of point estimator, root mean-squared error of point estimator,
pointwise empirical coverage, pointwise interval length, uniform empirical coverage, and uniform
interval length.

For both DPG 1 and DGP 2, all of the three methods give pointwise coverage around 95%, while
the pointwise interval length for rd2d and rd2d.dist (kink = "off") are smaller compared to
rd2d.dist (kink = "on"). This is likely due to bandwidth shrinkage for kink adjustment, which
does results in a significantly smaller bias compared to the one ignoring the kink. Both rd2d and
rd2d.dist (kink = "off") give around 95% uniform coverage and a relatively shorter interval
length compared to rd2d.dist (kink = "on"), likely due to the same reason.
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(a) Point Estimation (b) Confidence Interval and Bands

(c) Treatment Effects Heatmap (d) p-values Heatmap

Figure 3: Estimation and Inference (Simulations).
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4 Conclusion

This paper introduced the R software package rd2d for causal inference in Boundary Discontinuity
designs. The package provides pointwise and uniform (over the treatment assignment boundary)
estimation and inference methods employing either a bivariate location score or a univariate distance
score. In addition, the methods can be used for graphical presentation. From a methodological
perspective, this paper introduced second generation bandwidth selection methods complementing
the main results in Cattaneo et al. [2025]. Simulation evidence demonstrated a good performance of
the package rd2d. Replication codes and related information are available at: https://rdpackages.
github.io/rd2d/.
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Method Index h Bias SD RMSE EC IL

rd2d

1 15.764 0.005 0.053 0.054 0.953 0.313
5 13.885 0.003 0.042 0.042 0.958 0.243

10 11.997 0.002 0.038 0.038 0.952 0.218
15 12.706 0.001 0.033 0.033 0.949 0.191
21 13.788 -0.003 0.049 0.049 0.957 0.329
25 12.908 0.001 0.031 0.031 0.950 0.177
30 11.688 -0.001 0.036 0.036 0.948 0.212
35 13.012 0.001 0.039 0.039 0.957 0.228
40 15.255 0.001 0.049 0.049 0.960 0.289

Uniform 0.948 0.348

rd2d.dist
kink = "off"

1 34.136 0.031 0.038 0.049 0.940 0.261
5 26.747 0.016 0.035 0.038 0.950 0.240

10 19.478 0.003 0.035 0.035 0.953 0.258
15 16.905 0.001 0.038 0.038 0.957 0.275
21 21.151 0.002 0.038 0.038 0.960 0.283
25 18.524 -0.021 0.039 0.044 0.955 0.255
30 16.986 -0.000 0.037 0.037 0.948 0.280
35 24.532 -0.005 0.033 0.033 0.956 0.233
40 33.070 -0.015 0.035 0.038 0.953 0.244

Uniform 0.946 0.408

rd2d.dist
kink = "on"

1 14.955 0.012 0.079 0.080 0.954 0.729
5 11.718 0.003 0.072 0.072 0.948 0.646

10 8.533 0.001 0.078 0.078 0.954 0.698
15 7.406 -0.002 0.083 0.083 0.948 0.753
21 9.266 -0.003 0.083 0.083 0.944 0.810
25 8.116 0.005 0.076 0.077 0.955 0.697
30 7.442 -0.001 0.079 0.079 0.951 0.761
35 10.748 0.002 0.067 0.067 0.948 0.626
40 14.488 -0.001 0.075 0.075 0.948 0.667

Uniform 0.89 1.073

Table 2: Simulation results for DGP 1 (Linear)
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Method Index h Bias SD RMSE EC IL

rd2d

1 15.730 0.004 0.052 0.053 0.958 0.315
5 13.803 0.005 0.041 0.041 0.965 0.244

10 11.954 0.003 0.038 0.038 0.943 0.218
15 12.600 0.001 0.033 0.033 0.944 0.193
21 13.716 -0.008 0.049 0.049 0.962 0.331
25 12.833 -0.003 0.031 0.031 0.952 0.177
30 11.679 0.000 0.035 0.034 0.962 0.212
35 12.966 -0.001 0.041 0.041 0.954 0.230
40 15.312 -0.007 0.050 0.050 0.942 0.288

Uniform 0.942 0.350

rd2d.dist
kink = "off"

1 34.303 0.040 0.038 0.055 0.927 0.260
5 24.471 0.016 0.037 0.041 0.960 0.262

10 18.392 -0.001 0.036 0.036 0.951 0.273
15 14.179 -0.003 0.042 0.042 0.944 0.324
21 21.170 -0.004 0.037 0.038 0.959 0.283
25 16.036 -0.020 0.045 0.049 0.943 0.293
30 13.771 -0.002 0.043 0.043 0.947 0.341
35 19.017 -0.016 0.043 0.046 0.954 0.297
40 31.541 -0.071 0.042 0.083 0.935 0.260

Uniform 0.949 0.461

rd2d.dist
kink = "on"

1 15.028 0.015 0.079 0.080 0.950 0.718
5 10.721 0.005 0.074 0.074 0.958 0.710

10 8.058 0.000 0.082 0.082 0.937 0.746
15 6.212 -0.008 0.097 0.097 0.942 0.903
21 9.275 -0.001 0.084 0.084 0.945 0.811
25 7.026 0.001 0.088 0.088 0.950 0.810
30 6.033 0.006 0.102 0.102 0.944 0.947
35 8.331 -0.001 0.090 0.090 0.957 0.817
40 13.818 -0.020 0.079 0.081 0.952 0.708

Uniform 0.822 1.199

Table 3: Simulation results for DGP 2 (Quadratic)
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