
Estimation and Inference in Boundary Discontinuity

Designs: Location-Based Methods∗

Matias D. Cattaneo† Rocio Titiunik‡ Ruiqi (Rae) Yu§

October 31, 2025

Abstract

Boundary discontinuity designs are used to learn about causal treatment effects

along a continuous assignment boundary that splits units into control and treatment

groups according to a bivariate location score. We analyze the statistical properties of

local polynomial treatment effect estimators employing location information for each

unit. We develop pointwise and uniform estimation and inference methods for both

the conditional treatment effect function at the assignment boundary as well as for

transformations thereof, which aggregate information along the boundary. We illus-

trate our methods with an empirical application. Companion general-purpose software

is provided.
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1 Introduction

We study estimation and inference in boundary discontinuity (BD) designs, where the goal

is to learn about causal treatment effects along a continuous assignment boundary that

splits units into control and treatment groups according to a bivariate location score. This

setup is also known as a Multi-Score Regression Discontinuity (RD) design [Papay et al.,

2011, Reardon and Robinson, 2012, Wong et al., 2013], a leading particular case being the

Geographic RD design [Keele and Titiunik, 2015, Keele et al., 2015, Keele and Titiunik,

2016, Keele et al., 2017, Galiani et al., 2017, Rischard et al., 2021, Diaz and Zubizarreta,

2023]. As in the univariate RD design, under appropriate assumptions, the abrupt jump in

treatment assignment along the boundary can be used to identify causal treatment effects,

even if the treatment is specifically targeted to those units who need it the most. This makes

BD designs a central tool in non-experimental policy evaluation. See Cattaneo and Titiunik

[2022] for an overview of the RD design literature, Cattaneo et al. [2024c, Section 5] for a

practical introduction to Multi-Dimensional RD designs, and Cattaneo et al. [2026] for a

review of empirical practice employing BD designs.

BD designs are commonly used in the quantitative social, behavioral, and biomedical sci-

ences when the interventions of interest are assigned based on bivariate scores. For example,

Londoño-Vélez, Rodŕıguez, and Sánchez [2020] study the effects of Ser Pilo Paga (SPP), a

government subsidy in Colombia that provided tuition support for post-secondary students

to attend a government-certified higher education institution. Eligibility was based on both

merit and economic need: in order to qualify for the program, students had to obtain a high

grade in Colombia’s national standardized high school exit exam, SABER 11, and they also

had to come from economically disadvantaged families, as measured by the survey-based

wealth index SISBEN. The eligibility rule was deterministic with a fixed bivariate cutoff: to

qualify for the program, students had to obtain a SABER 11 score in the top 9 percent of

scores, and their household’s SISBEN index had to be below a region-specific threshold.

We study estimation and inference of causal treatment effect parameters in BD designs
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where the location of each unit given by the two dimensions of the bivariate score is explicitly

incorporated in (local) regression analyses—we refer to it as the location-based approach, to

distinguish it from analyses where bivariate scores are not directly used but rather trans-

formed according to some distance measure [Cattaneo et al., 2025b,a]. Although practitioners

across the quantitative sciences employ the BD design to study treatment effects by adapting

local polynomial methods developed for the univariate RD design, there is no foundational

understanding of the statistical properties of these methods in the bivariate case, particularly

when interest lies on uniformity or information aggregation over all boundary points. Our

paper establishes the properties of local polynomial methods for BD estimation and inference

using bivariate scores both pointwise and uniformly, and offers practical recommendations

for the analysis and interpretation of BD designs in applications. Although our pointwise

results are straightforward generalizations of prior results, our uniform methods are novel

and offer researchers the ability to conduct valid inferences for the entire collection of average

treatment effects at each boundary point, as well as for transformations thereof.

Our causal inference setup follows standard potential outcomes notation [see, e.g., Hernán

and Robins, 2020]. The triplet (Yi(0), Yi(1),X
⊤
i )

⊤, i = 1, 2, . . . , n, is a random sample,

where Yi(0) and Yi(1) denote the potential outcomes for unit i under control and treatment

assignment, respectively, and the score Xi = (X1i, X2i)
⊤ is a continuous bivariate vector

with support X ⊆ R
2. Units are assigned to either the control group or the treatment

group according to their location Xi relative to a known one-dimensional boundary curve

B splitting the support X in two disjoint regions: X = A0 ∪ A1, with A0 and A1 the

control and treatment disjoint (connected) regions, respectively, and B = bd(A0) ∩ bd(A1),

where bd(At) denotes the boundary of the set At. The observed outcome is Yi = 1(Xi ∈

A0) · Yi(0) + 1(Xi ∈ A1) · Yi(1). Without loss of generality, we assume that the boundary

belongs to the treatment group, that is, bd(A1) ⊂ A1 and B ∩A0 = ∅.

In the SPP application, each student was assigned a bivariate scoreXi = (SABER11i, SISBENi)
⊤,

whereX1i = SABER11i recorded the SABER11 score andX2i = SISBENi recorded the SISBEN

wealth score. After recentering each variable at its corresponding threshold, the treatment
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(a) Scatterplot and Boundary. (b) Treatment Effects Along Boundary.

Figure 1: Scatterplot, Assignment Boundary, and Treatment Effects Using SPP data.
Note: Panel (a) presents a scatterplot of the bivariate score Xi using the SPP data, and also plots the

treatment boundary B with 40 marked grid points. Panel (b) presents causal treatment effect estimates

over the 40 boundary grid points depicted in Panel (a). Specifically, the black solid dots correspond to τ̂(bj)

(BATEC), the blue dotted line corresponds to τ̂WBATE (WBATE), and the red dot-dash line corresponds to

τ̂LBATE (LBATE). The companion R software package rd2d is used for implementation; further details are

available in the replication files and in Cattaneo et al. [2025c].

assignment boundary becomes B = {(SABER11, SISBEN) : (SABER11, SISBEN) ∈ {SABER11 ≥

0 and SISBEN = 0} ∪ {SABER11 = 0 and SISBEN ≥ 0}}. Figure 1a presents a scatterplot of

the bivariate score of the data of students in the 2014 cohort (n = 363, 096 observations),

and also plots the bivariate assignment boundary B together with 40 evenly-spaced cutoff

points along the boundary, denoted by b1, . . . ,b40.

We begin by considering the functional causal parameter

τ(x) = E[Yi(1)− Yi(0)|Xi = x], x ∈ B,

which we call the boundary average treatment effect curve (BATEC) because it captures

the average treatment effects at each point on the boundary. Our first goal is to conduct

estimation and inference for τ(x), both pointwise for each x ∈ B and uniformly over the

entire boundary B. In the SPP application, the outcome is Yi = 1 if student i attended

college or Yi = 0 otherwise, and thus the causal parameter τ(x) captures the effect of SPP
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on the probability of college education for students at the margin of program eligibility, as

determined by their bivariate score Xi = (SABER11i, SISBENi)
⊤ ∈ B. The parameter τ(x)

captures policy-relevant heterogeneous treatment effects along the boundary B: for exam-

ple, in Figure 1a, τ(b1) is the average treatment effect at the boundary point x = b1 where

students have high SISBEN score (wealth) and low SABER11 score (academic), while τ(b40)

is the average treatment effect at the boundary point x = b40, where students have low SIS-

BEN score and high SABER11 score. Identification of these boundary treatment effects is

analogous to identification in standard continuity-based univariate RD design [Hahn et al.,

2001]: treatment assignment changes abruptly along the boundary B, which implies that

conditional expectations on each side of this boundary can be used to identify τ(x) when-

ever there is no systematic “sorting” of units into treatment and control, that is, whenever

E[Yi(0)|Xi = x] and E[Yi(1)|Xi = x] are continuous for all x ∈ B (Assumption 1 below). For

more discussion, see Papay et al. [2011], Reardon and Robinson [2012], Wong et al. [2013],

Keele and Titiunik [2015], and references therein.

The boundary average treatment effect curve, τ(x) for x ∈ B, captures the heterogene-

ity of causal treatment effects along the boundary. In applications, researchers may also

wish to summarize this heterogeneity in a single causal parameter. This can be achieved

by considering functional transformations of τ(x). We consider two leading examples of

aggregated causal effects along the boundary: the weighted boundary average treatment ef-

fect (WBATE), and the largest boundary average treatment effect (LBATE). The WBATE

parameter is

τWBATE =

∫
B
τ(x)w(x)dH(x)∫
B
w(x)dH(x)

,

where H denotes the one-dimensional Hausdorff measure, and the integrals are defined via

Carathéodory’s Theorem following classical measure theory results [Simon et al., 1984, Fed-

erer, 2014]. If the boundary is “nice” enough, the integrals in the definition of τWBATE may

sometimes be represented as simple line integrals. Intuitively, τWBATE “averages” all the (po-
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tentially heterogeneous) treatment effects τ(x) at each boundary point. See Reardon and

Robinson [2012] and Wong et al. [2013] for more discussion. The LBATE parameter is

τLBATE = sup
x∈B

τ(x),

another aggregate causal parameter that captures the “best” causal treatment effect along

the assignment boundary. See, e.g., Andrews et al. [2024] for a discussion on this type of

extreme treatment effects for policy decisions. In the SPP application, τWBATE and τLBATE cap-

ture the average and largest causal effect of receiving the college subsidy across all students

near the boundary of eligibility, respectively.

Motivated by the local-to-boundary identifiability of τ(x), it is natural to employ flexible

regression methods using only observations whose scores are near each boundary point.

Local polynomial methods are the preferred choice for estimation and inference because they

rely on simple (weighted) linear regression estimates that intuitively incorporate localization

to x ∈ B, while also retaining most of the familiar features of least squares regression.

We study the statistical properties of these location-based treatment effect estimators, and

present pointwise and uniform estimation and inference methods for τ(x) as well for τWBATE

and τLBATE.

As a first illustration, Figure 1b presents the estimated average treatment effects at 40 dif-

ferent boundary points depicted in Figure 1a, denoted by τ̂(bj), j = 1, . . . , 40, as well point

estimates of WBATE and LBATE, denoted by τ̂WBATE and τ̂LBATE, respectively. This initial

results motivate the importance of conducting estimation and inference for the boundary

average treatment effect curve to capture heterogeneity: for students who are marginal in

terms of merit, the program appears to have a roughly constant effect along wealth levels, but

for students who are marginal on wealth, the program appears to have a decreasing effect as

academic performance improves. This finding suggests that students from under-privileged

backgrounds may benefit more from SPP than wealthier and high-achieving students. We

offer formal estimation and inference methods to support this initial finding, and for aggre-
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gation of heterogeneous treatment effects along the boundary.

1.1 Organization and Related Literature

Section 2 introduces the formal causal inference framework and the location-based estimation

approach (Assumption 1 below), which generalizes the classical RD design setup to bivariate

scores and treatment assignment rules. For a review of the RD literature see Cattaneo and

Titiunik [2022], and for a practical introduction see Cattaneo et al. [2020, 2024c]. We provide

foundational theory and methods for BD designs discussed in Cattaneo et al. [2024c, Chapter

5]; see also Jardim et al. [2024]. Seminal empirical examples in the social sciences include

Card and Krueger [1994], Black [1999] and Dell [2010]; see Cattaneo et al. [2026] for many

more empirical examples.

Section 3 presents pointwise (for each x ∈ B), integrated mean square (over B), and

uniform (over B) estimation and inference methods for the location-based local polynomial

treatment effect estimator. Our pointwise results are generalizations of well-known results in

nonparametric literature [e.g., Härdle et al., 2004, and references therein]: the main innova-

tion underlying those results is to present a new regularity conditions on the bivariate kernel

function and boundary B (Assumption 2 below). We discuss the pointwise results as a build-

ing block for our integrated mean square and uniform results, which require new theoretical

development and thus provide a novel contribution to the literature. The main technical

issue is that our mean square and uniform results are established over the one-dimensional

manifold B, and thus its shape can affect the statistical validity of those estimation and

inference methods. We also discuss new bandwidth selection methods based on mean square

error (MSE) expansions, robust bias-corrected inference, and related implementation details.

Our results provide natural generalizations of well-established results for univariate RD de-

signs; see Calonico et al. [2020] for bandwidth selection, and Calonico et al. [2014, 2018,

2022] for robust bias correction. See also Papay et al. [2011] for an early methodological

discussion.

Section 4 studies the aggregated causal parameter τWBATE, which corresponds to an integral
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over a one-dimensional manifold of a two-dimensional (difference of) conditional expectation

functions. This type of object has only been studied in the literature very recently: in

concurrent work, Chen and Gao [2025] developed estimation and inference methods for

integral functionals on submanifolds using series/sieve estimation. Our theoretical results

also concern integral functionals on submanifolds, but when using local polynomial regression

as the underlying nonparametric ingredient. Therefore, our estimation and inference results

for τWBATE are new to the literature. See Reardon and Robinson [2012] and Wong et al. [2013]

for early methodological discussion. Our large-sample nonparametric results complement

the design-based methods developed in Keele et al. [2015] and Diaz and Zubizarreta [2023],

and the Bayesian methods developed in Rischard et al. [2021] for BD designs.

Section 5 studies the aggregated causal parameter τLBATE, and presents estimation and

inference methods based on the location-based local polynomial treatment effect estimator.

These results offer new treatment effect estimation and causal inference in the context of

BD designs, previously unavailable in the literature.

Section 6 deploys our theoretical and methodological results to the SPP data, revising

the main results reported in Londoño-Vélez, Rodŕıguez, and Sánchez [2020]. In addition

to providing further empirical evidence in favor of their empirical findings, we also find

some evidence of treatment effect heterogeneity along the assignment boundary B. All

empirical results are obtained using the companion R package rd2d, and we provide complete

replication files.

Section 7 discusses two extensions of our work. First, we consider imperfect compliance

(fuzzy) BD designs. Second, we consider the role of pre-intervention covariates for efficiency

improvements and heterogeneity analysis. We outline how our theoretical work can be di-

rectly deployed, or easily extended, to develop new point estimation and inference procedures

for each generalization.

Section 8 concludes. The supplemental appendix presents more general theoretical results,

reports all technical proofs, and gives other results that may be of independent interest. In

particular, Section SA-6 presents a new strong approximation theorem for empirical pro-
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cess with polynomial bounded moments, which generalizes recent work in Cattaneo and Yu

[2025]. Finally, our companion software article [Cattaneo et al., 2025c] discusses the general-

purpose R software package rd2d (https://rdpackages.github.io/rd2d) implementing

the methods developed in this paper.

1.2 Notation

We employ standard concepts and notations from empirical process theory [van der Vaart

and Wellner, 1996, Giné and Nickl, 2016] and geometric measure theory [Simon et al., 1984,

Federer, 2014]. For a random variable Vi, we write En[g(Vi)] = n−1
∑n

i=1 g(Vi). For

a Borel set S ⊆ X, the De Giorgi perimeter of S is perim(S) = supg∈D2(X)

∫
R2 1(x ∈

S) div g(x)dx/∥g∥∞, where div is the divergence operator, and D2(X) denotes the space of

C∞ functions with values in R
2 and with compact support included in X. When S is con-

nected, and the boundary bd(S) is a smooth simple closed curve, perim(S) simplifies to the

curve length of bd(S). A curve B ⊆ R
2 is a rectifiable curve if there exists a Lipschitz contin-

uous function γ : [0, 1] 7→ R
2 such that B = γ([0, 1]). H denotes the one-dimensional Haus-

dorff (outer) measure, and integration against H is defined using classical (geometric) measure

theory. For a function f : R2 7→ R, Supp(f) denotes closure of the set {x ∈ R
2 : f(x) ̸= 0}.

For reals sequences an = o(bn) if lim supn→∞
|an|
|bn| = 0, an ≲ bn if there exists some constant

C and N > 0 such that n > N implies |an| ≤ C|bn|. For sequences of random variables

an = oP(bn) if plimn→∞
|an|
|bn| = 0, |an| ≲P |bn| if lim supM→∞ lim supn→∞ P[|an

bn
| ≥ M ] = 0.

Finally, Φ(x) denotes the standard Gaussian cumulative distribution function.

2 Setup

We impose the following basic conditions on the underlying data generating process.

Assumption 1 (Data Generating Process). Let t ∈ {0, 1}, p ≥ 1, and v ≥ 2.

(i) (Y1(t),X
⊤
1 )

⊤, . . . , (Yn(t),X
⊤
n )

⊤ are independent and identically distributed random vec-

tors.
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(ii) The distribution of Xi has a Lebesgue density fX(x) that is continuous and bounded

away from zero on its support X = [L, U]2, for −∞ < L < U < ∞.

(iii) µt(x) = E[Yi(t)|Xi = x] is (p+ 1)-times continuously differentiable on X.

(iv) σ2
t (x) = V[Yi(t)|Xi = x] is bounded away from zero and continuous on X.

(v) sup
x∈X E[|Yi(t)|

2+v|Xi = x] < ∞.

These conditions are analogous to the usual conditions imposed in the classical RD de-

sign with univariate score. Part (ii) goes beyond the usual compact support restriction

and further assumes a tensor product structure on X to avoid technical difficulties in our

strong approximations for uniform distribution theory; this condition is not practically re-

strictive because all methods considered in this paper localize to the boundary, which is in

the interior of X. Part (iii) imposes standard smoothness conditions on the bivariate condi-

tional expectation functions of interest, which will play an important role in misspecification

(smoothing) bias reduction in our upcoming results. Nonparametric identification of τ(x)

follows directly from Assumption 1: see Papay et al. [2011], Reardon and Robinson [2012],

Keele and Titiunik [2015], and references therein.

The location-based estimator of the boundary average treatment effect curve τ(x) is

τ̂(x) = e⊤1 β̂1(x)− e⊤1 β̂0(x), x ∈ B,

where, for t ∈ {0, 1},

β̂t(x) = argmin
β∈Rpp+1

En

[(
Yi − rp(Xi − x)⊤β

)2
Kh(Xi − x)1(Xi ∈ At)

]
, (1)

with pp = (2+p)(1+p)/2−1, rp(u) = (1, u1, u2, u
2
1, u1u2, u

2
2, · · · , u

p
1, u

p−1
1 u2, · · · , u1u

p−1
2 , up

2)
⊤

the pth order polynomial expansion of the bivariate vector u = (u1, u2)
⊤, and Kh(u) =

K(u1/h, u2/h)/h
2 for a bivariate kernel function K(·) and bandwidth parameter h. We em-

ploy the same bandwidth for each dimension of Xi only for simplicity, and because it is

common practice to first standardize each dimension of the bivariate score before imple-
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menting the estimator τ̂(x).

We impose the following assumption on the bivariate kernel function and assignment

boundary.

Assumption 2 (Kernel and Boundary). Let t ∈ {0, 1}.

(i) B is a rectifiable curve.

(ii) K : R2 → [0,∞) is compact-supported and Lipschitz continuous, or K(u) = 1(u ∈

[−1, 1]2).

(iii) There exists U ⊆ R
2, such that K(u) ≥ κ > 0 for all u ∈ U , λmin(

∫
U
rp(z)rp(z)

⊤dz) >

0, and the integration satisfies lim infh↓0 infx∈B
∫
U
K(u)1(x+ hu ∈ At)du ≳ 1.

Assumption 2(i) imposes minimal regularity on the one-dimensional assignment boundary

B, which is useful to compute integrals over that one-dimensional manifold, and to establish

uniform and aggregated results. Assumption 2(ii) is standard in the literature. Assump-

tion 2(iii) is new to the literature, and crucial for the asymptotic analysis. It restricts the

geometry of B as well as it interacts with the kernel K; the density of the data fX(x) is

not explicitly present because, by Assumption 1(ii), it is bounded away from zero. Heuris-

tically, this assumption ensures that the kernel “splits” the (roughly locally uniform) mass

between treatment and control regions “evenly” given the local shape of B. In the sup-

plemental appendix (Lemma SA-1), we carefully show that Assumptions 1(ii) and 2 imply

that the population Gram matrix Γt,x = E
[
rp
(
Xi−x

h

)
rp
(
Xi−x

h

)⊤
Kh(Xi − x)1(Xi ∈ At)

]
≳

∫
At

rp
(
Xi−x

h

)
rp
(
Xi−x

h

)⊤
Kh(Xi−x) is full rank for h small enough, uniformly in x ∈ B. This

result is novel to the literature, and guarantees that the treatment effect estimator τ̂(x) will

be well-defined in large samples, under the conditions imposed in this paper. Assumption

2(iii) is stated uniformly over B in anticipation of our uniform estimation and inference

results, but it can be relaxed to hold only pointwise in x ∈ B for our pointwise results; see

the supplemental appendix for details.

Finally, to ensure that the aggregated weighted boundary average treatment effect τWBATE

is well-defined, we impose the following conditions on the weight function.
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Assumption 3 (Weight Function and Boundary). Let w : B 7→ R with sup
x∈B |w(x)| < ∞,

infx∈B |w(x)| > 0, and
∫
B
|w(x)|dH(x) < ∞.

In particular, w(x) = fX(x) satisfies Assumptions 3. In this case, the WBATE reduces to

the boundary average treatment effect (BATE):

τBATE =

∫

B

τ(x)f(x|Xi ∈ B)dH(x), f(x|Xi ∈ B) =
fX(x)∫

B
fX(x)dH(x)

.

This causal parameter corresponds to the density-weighted average causal effect along the

assignment boundary, and is discussed by Wong et al. [2013]. See Cattaneo et al. [2025b] for

an alternative regression-based approach commonly used in practice to estimate the BATE.

3 Boundary Average Treatment Effect Curve

Given Assumption 1, pointwise and uniform point estimation results for (τ(x) : x ∈ B) follow

from standard local polynomial calculations and empirical process theory; the only technical

issue is related to the geometry of the boundary B, which is handled via Assumption 2.

On the other hand, our integrated mean square expansion and uniform distribution results

require new theoretical developments. All details are in the supplemental appendix.

3.1 Treatment Effect Estimation

Using standard concentration techniques from empirical process theory, we obtain the point-

wise and uniform convergence rate of τ̂(x).

Theorem 1 (Convergence Rates). Suppose Assumptions 1 and 2 hold. If nh2/ log(1/h) →

∞ and h → 0, then

(i) |τ̂(x)− τ(x)| ≲P
1√
nh2

+ 1

n
1+v
2+v h2

+ hp+1 for x ∈ B, and

(ii) sup
x∈B |τ̂(x)− τ(x)| ≲P

√
log(1/h)

nh2 + log(1/h)

n
1+v
2+v h2

+ hp+1.

This theorem immediately establishes consistency of the treatment effect estimator based

on the bivariate location score. Notably, the theorem shows that the bias is of order hp+1
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regardless of whether there are kinks or other irregularities in B. See Cattaneo et al. [2025a]

for more discussion.

Given its standard structure, it is easy to establish a pointwise (conditional on X) MSE

expansion for the estimator τ̂(x) for each x ∈ B. Furthermore, employing tools from geo-

metric measure theory, it is also possible to establish an integrated (conditional on X) MSE

expansion along the boundary. Using standard multi-index notation, the leading (pointwise)

conditional bias is Bx = B1,x −B0,x with

Bt,x = e⊤1 Γ̂
−1

t,x

∑

|k|=p+1

µ
(k)
t (x)

k!
E

[
rp

(Xi − x

h

)(Xi − x

h

)k

Kh(Xi − x)1(Xi ∈ At)
]

and Γ̂t,x = En

[
rp
(
Xi−x

h

)
rp
(
Xi−x

h

)⊤
Kh(Xi − x)1(Xi ∈ At)

]
, for t ∈ {0, 1}. Similarly, the

leading (pointwise) conditional variance is Vx = V1,x + V0,x with Vt,x = e⊤1 Γ̂
−1

t,xΣt,x,xΓ̂
−1

t,xe1

and

Σt,x,x = h2
E

[
rp

(Xi − x

h

)
rp

(Xi − x

h

)⊤
Kh(Xi − x)2σ2

t (Xi)1(Xi ∈ At)
]
,

for t ∈ {0, 1}. The following theorem gives the MSE expansions. Let X = (X⊤
1 , . . . ,X

⊤
n ).

Theorem 2 (MSE Expansions). Suppose Assumptions 1, 2, and 3 hold. If nh2/ log(1/h) →

∞ and h → 0, then

(i) E[(τ̂(x)− τ(x))2|X] = h2(p+1)B2
x
+ 1

nh2Vx + oP(Rn), and

(ii)
∫
B
E[(τ̂(x)− τ(x))2|X]w(x)dH(x) = h2(p+1)

∫
B
B2

x
w(x)dH(x) + 1

nh2

∫
B
Vxw(x)dH(x) +

oP(Rn),

with Rn = h2p+2 + n−1h−2 + n− 2(1+v)
2+v h−4.

Ignoring the higher-order terms, the approximate MSE-optimal and IMSE-optimal band-

width choices are

hMSE,x =
( 2Vx

(2p+ 2)B2
x

1

n

)1/(2p+4)

and hIMSE =
( 2

∫
B
Vxw(x)dH(x)

(2p+ 2)
∫
B
B2

x
w(x)dH(x)

1

n

)1/(2p+4)

,
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provided that Bx ̸= 0 and
∫
B
B2

x
ω(x)dH(x) ̸= 0, respectively. These choices are infeasible

because a preliminary bandwidth, as well as estimates of the the conditional variances and

higher-order derivatives of the conditional mean, are needed. We discuss implementation in

Section 3.3, and in our companion software article [Cattaneo et al., 2025c]. It follows from

Theorems 1 and 2 that, for an appropriate choice of tuning parameters, the estimator τ̂(x)

can achieve the usual nonparametric optimal convergence rates [see, e.g., Tsybakov, 2008, for

a textbook review]. Therefore, MSE-optimal and IMSE-optimal location-based treatment

effect estimators of τ(x) can be constructed using hMSE,x and hIMSE, respectively.

Most of the results in this section are standard in the literature. The one exception is

the integrated MSE expansion in Theorem 2, which requires additional care to handle the

integral over the one-dimensional manifold B. We present these point estimation results

because they will play an important role in our upcoming uniform (over B) and aggregation

(along B) analyses of the boundary average treatment effect curve.

3.2 Uncertainty Quantification

Given a bandwidth choice, the feasible t-statistic is

T̂(x) =
τ̂(x)− τ(x)√

Ω̂x,x

, x ∈ B,

where, using standard least squares algebra, the variance estimator is

Ω̂x1,x2 = Ω̂0,x1,x2 + Ω̂1,x1,x2 , Ω̂t,x1,x2 =
1

nh2
e⊤1 Γ̂

−1

t,x1
Σ̂t,x1,x2Γ̂

−1

t,x2
e1

with

Σ̂t,x1,x2 = h2
En

[
rp

(Xi − x1

h

)
rp

(Xi − x2

h

)⊤
Kh(Xi − x1)Kh(Xi − x2)ε̂i(x1)ε̂i(x2)1(Xi ∈ At)

]

and ε̂i(x) = Yi − 1(Xi ∈ A0)Rp(Xi − x)⊤β̂0(x) − 1(Xi ∈ A1)Rp(Xi − x)⊤β̂1(x), for all

x1,x2 ∈ B and t ∈ {0, 1}.
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Wald-type feasible confidence intervals and confidence bands over B take the form:

Îα(x) =

[
τ̂(x)−qα

√
Ω̂x,x , τ̂(x) +qα

√
Ω̂x,x

]
, x ∈ B,

for any α ∈ (0, 1), and where qα denotes the appropriate quantile depending on the de-

sired inference procedure. For pointwise inference, it is a textbook exercise to show that

supt∈R |P[T̂(x) ≤ t] − Φ(t)| → 0 for each x ∈ B, under standard regularity conditions, and

provided that the “small bias” condition nh2p+4 → 0 holds. This result can then be used to

construct the usual confidence intervals for τ(x).

For uniform inference (over B), two challenges arise: (i) the stochastic process (T̂(x) :

x ∈ B) is not asymptotically tight, and thus it does not converge weakly in the space of

uniformly bounded real functions supported on B and equipped with the uniform norm [van

der Vaart and Wellner, 1996, Giné and Nickl, 2016]; and (ii) the geometry of the manifold

B can affect the validity of the distributional approximation (this is a new problem specific

to this paper). To circumvent both problems, we first approximate the distribution of the

entire non-Donsker stochastic process (T̂(x) : x ∈ B), and we then deduce a distributional

approximation for sup
x∈B |T̂(x)|. This approach enable us to construct asymptotically valid

confidence bands because

P
[
τ(x) ∈ Îα(x) , for all x ∈ B

]
= P

[
sup
x∈B

∣∣T̂(x)
∣∣ ≤ qα

]
.

Our technical results are established via a new strong approximation theorem (Section SA-

7 in the supplemental appendix), combined with technical results from Cattaneo and Yu

[2025], Cattaneo et al. [2024a], Chernozhukov et al. [2014a,b], Chernozhuokov et al. [2022],

and Dudley [2014]. Let W = (Y1, . . . , Yn,X).

Theorem 3 (Confidence Intervals and Bands). Suppose Assumptions 1 and 2 hold.

(i) For all x ∈ B, if n
v

2+vh2 → ∞ and nh2p+4 → 0, then

P
[
τ(x) ∈ Îα(x)

]
→ 1− α,
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for qα = Φ−1(1− α/2).

(ii) If n
v

2+vh2/ log n → ∞, lim infn→∞
log h
logn

> −∞, nh2p+4 → 0, and perim({y ∈ At :

(y − x)/h ∈ Supp(K)}) ≲ h for all x ∈ B and t ∈ {0, 1}, then

P
[
τ(x) ∈ Îα(x), for all x ∈ B

]
→ 1− α,

for qα = inf{c > 0 : P[sup
x∈B |Ẑn(x)| ≥ c|W] ≤ α}, where (Ẑn : x ∈ B) is a

Gaussian process conditional on W with E[Ẑn(x1)|W] = 0 and E[Ẑn(x1)Ẑn(x2)|W] =

Ω̂x1,x2/
√
Ω̂x1,x1Ω̂x2,x2, for all x1,x2 ∈ B.

This theorem gives asymptotically valid pointwise and uniform uncertainty quantification

for the conditional treatment effect τ(x) using the location-based estimator τ̂(x). As ex-

pected in a nonparametric smoothing setting, the undersmoothing condition nh2p+4 → 0

rules out the (I)MSE-optimal point estimator of τ(x). Thus, for implementation of both

pointwise and uniform inference, we address this issue via robust bias correction [Calonico

et al., 2014, 2018, 2022]; see Section 3.3 for details. For uniform inference, our method

requires an additional technical restriction on B in order to avoid an overly “wiggly” assign-

ment boundary that would lead to invalid statistical inference. Intuitively, this condition

rules out one-dimensional manifolds that may be “smooth and nice” but nonetheless “too

long”.

3.3 Implementation

The bivariate local polynomial estimator τ̂(x) and associated t-statistic T̂(x) are fully adap-

tive to kinks and other irregularities of the boundary B, provided Assumption 2(ii) holds

and the boundary is not too “wiggly”. Therefore, it is straightforward to implement local

and global bandwidth selectors based on Theorem 2. In particular, replacing the asymptotic

bias and variance constants, Bx and Vx, with preliminary estimators, we obtain the feasible
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plug-in bandwidth selectors

ĥMSE,x =
( 2V̂x

(2p+ 2)B̂2
x

1

n

)1/(2p+4)

and ĥIMSE =
( 2

∫
B
V̂xw(x)dH(x)

(2p+ 2)
∫
B
B̂2

x
w(x)dH(x)

1

n

)1/(2p+4)

,

where, for a preliminary bandwidth choice a → 0, B̂x = B̂1,x − B̂0,x is constructed using

B̂t,x = e⊤1 Γ̂
−1

t,x

∑

|k|=p+1

µ̂
(k)
t (x)

k!
En

[
rp

(Xi − x

a

)(Xi − x

a

)k

Ka(Xi − x)1(Xi ∈ At)
]
,

with Γ̂t,x computed using the preliminary bandwidth a, and where µ̂
(k)
t (x) a preliminary

estimator of µ
(k)
t (x), and V̂x = na2Ω̂x,x is constructed using the variance estimator with the

preliminary bandwidth a. Omitted implementation details are discussed in Cattaneo et al.

[2025c]; see also Calonico et al. [2020] for a review on modern bandwidth selection methods

in RD designs with univariate score.

The bandwidth choices ĥMSE,x and ĥIMSE can be used to implement (I)MSE-optimal τ̂(x)

treatment effect estimators, both pointwise and uniformly over B. Furthermore, leveraging

the results in Theorem 3, a simple application of robust bias-corrected inference proceeds by

employing the same (I)MSE-optimal bandwidth (for pth order point estimation), but then

constructing the t-statistic T̂(x) with a (p+1)th polynomial order instead of pth polynomial

order. The core idea is to simultaneously (i) debias the (I)MSE-optimal point estimator

τ̂(x), and (ii) adjust the variance estimator to incorporate the additional uncertainty intro-

duced by the bias correction. This inference approach has several theoretical advantages

[Calonico et al., 2014, 2018, 2022], and has been validated empirically [Hyytinen et al., 2018,

De Magalhães et al., 2025].

Finally, regarding the computation of the Gaussian process conditional on W, (Ẑn(x) :

x ∈ B), there are two methodological issues to consider. First, simulation is implemented

over a grid of points forming a discretization of the index set of the continuous stochastic

process Ẑn; it is not difficult to show that as the number of points in the mesh increases,

the approximation becomes more accurate. Second, the estimated (discretized) covariate
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function may not be positive definite in finite samples, but this finite-sample issue can

be easily fixed via regularization; see Cattaneo et al. [2024b] for a discussion and related

technical results.

Our companion software package rd2d implements the procedures described in this section,

see Cattaneo et al. [2025c]. In Section 6, we use our proposed estimation and inference

methods to re-analyze the effects of the SPP program on college attendance.

4 Weighted Boundary Average Treatment Effect

Without loss of generality, we set
∫
B
w(x)dH(x) = 1, and thus consider the (normalized)

causal parameter

τWBATE =

∫

B

τ(x)w(x)dH(x),

where the weight function w : B 7→ R satisfies Assumption 3. The WBATE aggregates

the heterogeneous treatment effects (τ(x) : x ∈ B) at each boundary point according to

the chosen weighting scheme. Our results allow for similar causal parameters defined over a

region of the boundary as in Reardon and Robinson [2012].

The (plug-in, location-based) WBATE estimator is

τ̂WBATE =

∫

B

τ̂(x)w(x)dH(x).

In practice, this estimator can be computed by either analytic integration (when B is “sim-

ple” enough, e.g., via a line integral), or by forming a discretization of the assignment bound-

ary (e.g., as in Figure 1a). For the latter approach, letting (bj : j = 1, . . . , J) be points on

B, the estimator can be computed as τ̂WBATE ≈
∑J

j=1 τ̂(bj)w(bj), where in some applications

w(bj) could be replaced by some data-driven quantity of interest such as w(bj) =
Nj

∑J
j=1 Nj

with Nj =
∑n

i=1 1(∥Xi − bj∥ ≤ h). Furthermore, the parameter and estimator may be

defined only for a segment of B. See Cattaneo et al. [2025c] for more discussion on imple-
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mentation.

Our first result establishes a MSE expansion for τ̂WBATE. We employ the following notation

for the leading (integrated) bias and variance:

BWBATE = B1,WBATE −B0,WBATE, Bt,WBATE =

∫

B

Bt,xw(x)dH(x),

and

ΩWBATE = Ω1,WBATE + Ω0,WBATE, Ωt,WBATE =

∫

B

∫

B

Ωt,x1,x2w(x1)w(x2)dH(x1)dH(x2),

for t ∈ {0, 1}.

Theorem 4 (MSE Expansion: WBATE). Suppose Assumptions 1, 2 and 3 hold. If nh2/ log(1/h) →

∞ and h → 0, then

E
[
(τ̂WBATE − τWBATE)

2
∣∣X

]
= ΩWBATE + h2p+2B2

WBATE
+ oP(Rn),

where (nh)−1 ≲ ΩWBATE ≲ (nh)−1, and Rn = (nh)−1 + h2p+2.

This theorem immediately establishes consistency of the estimator, that is, τ̂WBATE = τWBATE+

oP(1). In addition, Theorem 4 shows that the convergence rate of the estimator is improved

due to the aggregation along the boundary B: while the pointwise estimator τ̂(x) had

“variance terms” of order (nh2)−1 (Theorems 1 and 2), the estimator τ̂WBATE has a “variance

term” of order (nh)−1. Intuitively, the estimator τ̂WBATE corresponds to a “one-dimensional”

nonparametric estimate, thereby having a faster (and optimal) convergence rate.

The infeasible MSE-optimal bandwidth selector is

hWBATE =
( 2VWBATE

(2p+ 2)B2
WBATE

1

n

)1/(2p+4)

,

and a feasible counterpart can be constructed using plug-in estimators of BWBATE and VWBATE,

as we discussed in Section 3 for the estimator of the boundary average treatment effect
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curve, τ̂(x). Our companion software package rd2d implements this bandwidth selector to

construct an MSE-optimal point estimator τ̂WBATE of τWBATE, see Cattaneo et al. [2025c].

For inference, we consider the usual feasible t-statistics

T̂WBATE =
τ̂WBATE − τWBATE√

Ω̂WBATE

,

where the variance estimator is

Ω̂WBATE = Ω̂1,WBATE + Ω̂0,WBATE, Ω̂t,WBATE =

∫

B

∫

B

Ω̂t,x1,x2w(x1)w(x2)dH(b1)dH(x2),

for t ∈ {0, 1}.

Theorem 5 (Distributional Approximation: WBATE). Suppose Assumptions 1, 2, and 3

hold. If log(1/h)

n
v

2+v hd
= o(1) and nh2p+3 = o(1), then

sup
u∈R

∣∣P(T̂WBATE ≤ u)− Φ(u)
∣∣ = o(1).

Asymptotically valid hypothesis testing procedures and confidence interval estimators can

be constructed directly from this result. For example, under the conditions of the theorem,

a valid confidence interval estimator is

Îα,WBATE =

[
τ̂WBATE − Φ−1(1− α/2)

√
Ω̂WBATE , τ̂WBATE + Φ−1(1− α/2)

√
Ω̂WBATE

]
,

for any α ∈ (0, 1), and because P
[
τWBATE ∈ Îα,WBATE

]
→ 1 − α. For implementation, the

MSE-optimal point estimator can be used along with robust bias correction [Calonico et al.,

2014, 2018, 2022], as discussed after Theorem 3. Our companion software package rd2d also

implements this inference procedure.
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5 Largest Boundary Average Treatment Effect

As an alternative to the WBATE, τWBATE, researchers may be interested in learning about the

best (or worst) treatment effect along the assignment boundary: τLBATE = sup
x∈B τ(x). A

(plug-in) location-based estimator of the LBATE is

τ̂LBATE = sup
x∈B

τ̂(x).

Implementation of this estimator can be done over a grid of points discretizing B, that is,

τ̂LBATE ≈ max1≤j≤J τ̂(bj), where (bj : j = 1, . . . , J) are points on B. If desired, the parameter

and estimator may be defined only for a region of B.

Theorem 1 establishes consistency of the largest average treatment effect estimator along

the boundary, τ̂LBATE = τLBATE+oP(1); this theorem can also be used to deduce the convergence

rate for τ̂LBATE. Valid uncertainty quantification is established using our new strong approxi-

mation theorem (Section SA-7 in the supplemental appendix) for the non-Donsker t-statistic

stochastic process (T̂(x) : x ∈ B). Specifically, recall from Theorem 3 that (Ẑ(x) : x ∈ B)

is a (conditionally on W) mean-zero Gaussian process with feasible (conditional) covariance

function Cov
[
Ẑ(x1), Ẑ(x2)

∣∣W
]
= Ω̂

−1/2
x1,x1Ω̂x1,x2Ω̂

−1/2
x2,x2 for all x1,x2 ∈ B, and thus define the

confidence interval estimator

Îα,LBATE =

[
sup
x∈B

(
τ̂(x)− qα

√
Ω̂x,x

)
, sup

x∈B

(
τ̂(x) + qα

√
Ω̂x,x

) ]
,

where qα = inf
{
c > 0 : P

(
sup

x∈B
∣∣Ẑ(x)

∣∣ ≥ c
∣∣W

)
≤ α

}
.

Theorem 6 (Confidence Interval: Largest Treatment Effect). Suppose the assumptions and

conditions in Theorem 3 hold. If lim infn→∞
log h
logn

> −∞, (logn)3

n
v

2+v h2
= o(1) and nh2p+4 = o(1),

then

P

[
τLBATE ∈ Îα,LBATE

]
≥ 1− α + o(1).
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Implementation of Îα,LBATE is straightforward following the same approaches outlined for

Îα(x) and Îα,WBATE. In practice, finite-sample regularization may be useful to ensure that

infx∈B Ω̂x,x is bounded away from zero.

6 The Causal Effects of SPP on College Attendance

We illustrate our proposed causal inference methodology for BD designs with the SPP appli-

cation introduced in Section 1. Recall that the dataset has n = 363, 096 complete observa-

tions for the first cohort of the program (2014), where each observation corresponds to one

student, and the bivariate score is Xi = (X1i, X2i)
⊤ = (SABER11i, SISBENi)

⊤, where the first

dimension is the student’s SABER11 test score (ranging from −310 to 172) and the second

dimension is the student’s SISBEN wealth index (ranging from −103.41 to 127.21). Without

loss of generality, each dimension of the score is recentered at its corresponding cutoff for

program eligibility, so that the treatment assignment boundary is as shown in Figure 1a. All

the results in this section are implemented using our companion R software package rd2d,

and omitted details are given in the replication files.

The outcome variable of interest is college enrollment, with Yi = 1 if the student enrolled in

college and Yi = 0 otherwise. Figure 2 presents the results for the location-based estimators of

the boundary average treatment effect curve τ̂(x) estimated at 40 evenly-spaced grid points

bj ∈ B, with j ∈ {1, . . . , 40} depicted in Figure 1a, using a data-driven implementation

of hMSE,x as discussed in Section 3.3. Without loss of generality, each dimension of Xi is

standardized in order to accommodate a common bandwidth h. The point estimates coincide

with those reported in Figure 1b, but Figure 2a also includes confidence intervals (CI) and

confidence bands (CB) as developed in Section 3.2. The average treatment effects at the

chosen boundary points are highly statistically significant (different from zero), indicating

roughly homogeneous treatment effects along poverty (b1 through b21) and heterogeneous

treatment effects along academic performance (b21 through b40). The average treatment

effect on (the probability of) college attendance remains roughly constant as marginally
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academically achieving students become wealthier (τ̂(x) ≈ 0.3 for x ∈ {b1, . . . ,b21}), but

it decreases as the wealthiest eligible students increase their academic performance (from

τ̂(b21) ≈ 0.3 to τ̂(b40) ≈ 0.18). Figures 2b and 2c offer “heat maps” for the point estimates

and associated robust bias-corrected p-values along the assignment boundary B.

[ FIGURE 2 AROUND HERE]

To demonstrate the credibility of the BD design, we repeat the empirical analysis using a

pre-treatament covariate, the education level (measured in years) of the student’s mother, as

the outcome variable. This corresponds to a standard “placebo” analysis on a variable that

is known to be unaffected by the policy, where the treatment effect is therefore expected

to be statistically indistinguishable from zero. See Cattaneo et al. [2020, Section 5] for

more discussion of falsification tests in RD designs. As expected in a valid BD design,

Figure 3 shows that the average treatment effects at the boundary points considered are all

statistically indistinguishable from zero, both pointwise and uniformly.

[ FIGURE 3 AROUND HERE]

Table 1 presents the numerical results underlying our figures. The table reports the bound-

ary average treatment effect curve estimated for a subset of boundary points, and the estima-

tors of the aggregate parameters WBATE and LBATE. This table reports results for τ(bj)

with j = 1, 5, 10, 15, 20, 25, 30, 35, 40 to streamline the presentation, together with results for

the WBATE τWBATE, and the LBATE τLBATE. The WATE estimator τ̂B is implemented with

equal weighting: w(bj) = 1/J for all j = 1, . . . , J with J = 40. Table 1 also reports the

data-driven MSE-optimal bandwidths used (after undoing the standardization of the bivari-

ate location score Xi), and measures of uncertainty quantification (p-values and confidence

intervals).

The point estimation results in Table 1 corresponds to those reported in Figures 1b and

2a; see also Figure 2b for a heatmap plot. The confidence intervals corresponds to those

plotted in Figure 2a, while the p-values were graphically reported in Figure 2c. The numeri-

cal findings confirm the lack of heterogeneous treatment effects along the first portion of the
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Method (hMSE,1, hMSE,2) Estimate T-stat p-value CI

τ(b1) (26.9, 11.9) 0.3103 8.2791 0.0000 (0.2021, 0.4283)
τ(b5) (21.7, 9.6) 0.2910 7.0627 0.0000 (0.1518, 0.3722)
τ(b10) (18.1, 8.0) 0.3272 7.1519 0.0000 (0.1733, 0.4194)
τ(b15) (20.3, 9.0) 0.3068 7.9734 0.0000 (0.1747, 0.3822)
τ(b20) (18.1, 8.0) 0.3266 9.3204 0.0000 (0.2264, 0.4381)
τ(b25) (20.2, 9.0) 0.2938 8.6263 0.0000 (0.2100, 0.4306)
τ(b30) (25.3, 11.2) 0.2570 6.6527 0.0000 (0.1570, 0.4105)
τ(b35) (24.1, 10.7) 0.2144 3.9771 0.0001 (0.0588, 0.4059)
τ(b40) (31.5, 14.0) 0.1834 3.3760 0.0007 (0.0228, 0.3568)

τWBATE 0.2806 15.3726 0.0000 (0.2467, 0.3188)

τLBATE 0.3361 (0.2610, 0.4771)

Table 1: Treatment Effect Analysis Along the Boundary.

assignment boundary corresponding to variation in wealth levels as measured by SISBEN

(vertical-axis in Figure 1a), for students who met the minimum criteria of academic perfor-

mance as measured by SABER11 (horizontal-axis in Figure 1a). The numerical results also

confirm the presence of heterogeneous treatment effects for the wealthiest eligible students as

their academic performance increases, that is, τ̂(x) decreases as SABER11 increases. These

empirical findings are consistent with the expected behavioral response of students: the pro-

gram has a relatively smaller causal effect among the wealthiest eligible students with higher

academic performance, presumably because this type of student is more likely to be able to

enroll in college in the absence of the subsidy.

Table 1 also reports point estimates and uncertainty quantification for τWBATE and τLBATE; the

point estimates coincide with those reported in Figure 1b. The estimated WATE is τ̂WBATE =

0.2806, indicating that on average students who are eligible for SPP 28 percentage points

more likely to enroll in higher education. As shown, this aggregate effect masks considerable

heterogeneity along the boundary, which in this application ranges from τ̂(b1) = 0.3103 to

τ̂(b40) = 0.1834. The estimated LBATE is τ̂LBATE = 0.3361, corresponding to students in

the mid-range of poverty as measured by SISBEN (vertical-axis in Figure 1a) and with the

lowest eligible academic performance (horizontal-axis in Figure 1a); see Figure 1b.
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7 Extensions

The theoretical results in the supplemental appendix also consider derivative estimation

for each point on the assignment boundary B, which is needed to extend our findings to

regression kink designs [Card et al., 2015]. This section briefly discusses two other extensions

of our work that are useful for treatment effect estimation and causal inference in BD designs.

7.1 Imperfect Compliance

Our results can easily be extended to settings with imperfect treatment compliance, where

treatment assignment and treatment status may not be equal for some units; [see, e.g.,

Hernán and Robins, 2020]. To formally describe this setup, we need to modify the po-

tential outcomes notation. Let Di = 1(Xi ∈ A0) · Di(0) + 1(Xi ∈ A1) · Di(1) be the

observed treatment status, where Di(t) denotes the potential treatment status under treat-

ment assignment t ∈ {0, 1} for each unit. Accordingly, the observed outcome is now

Yi = 1(Xi ∈ A0) · Yi(0, Di(0)) + 1(Xi ∈ A1) · Yi(1, Di(1)), where the potential outcomes are

now a function of two arguments: Yi(t, d) denotes the potential outcome for unit i when this

unit is assigned to treatment t ∈ {0, 1} and takes treatment status d ∈ {0, 1}.

The usual fuzzy estimand and estimators are, respectively,

ζ(x) =
τY (x)

τD(x)
and ζ̂(x) =

τ̂Y (x)

τ̂D(x)
,

where, for each x ∈ B, τY (x) = E[Yi(1, Di(1))−Yi(0, Di(0))|Xi = x] and τD(x) = E[Di(1)−

Di(0)|Xi = x], and τ̂Y (x) = e⊤1 β̂Y,1(x)−e⊤1 β̂Y,0(x) and τ̂D(x) = e⊤1 β̂D,1(x)−e⊤1 β̂D,0(x), with

β̂A,1(x) denoting the local polynomial fit (1) when using the outcome variable A ∈ {Y,D}.

Under regularity conditions, our results immediately imply that τ̂Y (x) = τY (x) + oP(1)

and τ̂D(x) = τD(x)+ oP(1), pointwise and uniformly over x ∈ B. Therefore, using the exact
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second-order “linearization”,

ζ̂(x)− ζ(x) =
1

τD(x)

(
τ̂Y (x)− τY (x)

)
−

τY (x)

τD(x)2
(
τ̂D(x)− τD(x)

)
+Rn(x)

with

Rn(x) =
τY (x)

τD(x)2τ̂D(x)

(
τ̂D(x)− τD(x)

)2
−

1

τD(x)τ̂D(x)

(
τ̂Y (x)− τY (x)

)(
τ̂D(x)− τD(x)

)
,

it follows that ζ̂(x)−ζ(x) is a linear combination of (τ̂Y (x)−τY (x)) and (τ̂D(x)−τD(x)). The

remainder is negligible because sup
x∈B |Rn(x)| ≲P sup

x∈B |τ̂D(x)−τD(x)|
2+sup

x∈B |τ̂Y (x)−

τY (x)| supx∈B |τ̂D(x) − τD(x)|, and hence Theorem 1 can be applied for each of the two

BD estimators (one with outcome variable Yi, the other with outcome variable Di), under

additional regularity conditions (e.g., infx∈B τD(x) > 0). Pointwise and uniform inference

can be established using the results in the supplemental appendix. The causal interpretation

of the fuzzy estimand ζ(x), for each x ∈ B, can be obtained under additional assumptions;

see Arai et al. [2022] and references therein.

Aggregation of causal effects along the boundary under imperfect compliance is also pos-

sible. For example, in the case of the weighted boundary average treatment effect, the

estimand is ζWBATE =
∫
B
ζ(x)w(x)dH(x) =

∫
B

τY (x)
τD(x)

w(x)dH(x), where again the “lineariza-

tion” described above can be used to establish valid estimation and inference methods based

on the estimator ζ̂WBATE =
∫
B
ζ̂(x)w(x)dH(x). However, the causal interpretation of ζWBATE

depends on specific assumptions, and may not be straightforward in general; this is an open

question for future research.

7.2 Pre-treatment Covariates

In the context of standard (univariate) RD designs, it is common to incorporate pre-treatment

covariates in the estimation either for efficiency improvements [Calonico et al., 2019] or for

heterogeneity analysis [Calonico et al., 2025]. Following that literature, we can extend our

results to incorporate pre-treatment covariates in the analysis of BD designs. To conserve
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space, we only briefly illustrate the approach in the basic (sharp) setup of Section 2, but the

methods could also be extended to accommodate imperfect compliance.

Suppose that Z1, . . . ,Zn are pre-intervention covariates of dimension dZ ≥ 1. For efficiency

improvements, the covariate-adjusted location-based conditional treatment effect estimator

of τ(x) is

τ̃(x) = e⊤pp+2γ̃(x)

with

γ̃(x) = argmin
γ∈Rq

En

[(
Yi − r̃p(Xi − x, Ti,Zi)

⊤γ
)2
Kh(Xi − x)1(Xi ∈ At)

]
,

where Ti = 1(Xi ∈ A1), and r̃p(Xi − x, Ti,Zi) = [rp(Xi − x)⊤, Ti · rp(Xi − x)⊤,Z⊤
i ]

⊤

contains the full polynomial basis function for each treatment group but the pre-intervention

covariates are not interacted with the treatment indicator; hence its dimension is q = 2(pp+

1) + dZ . For heterogeneity analysis, the covariate-heterogeneous location-based boundary

average treatment effect curve estimator is

κ̌(x, z) = e⊤pp+2γ̌(x) + γ̌(x)⊤



02(pp+1)+dZ+(pp+1)dZ×dZ

IdZ
0ppdZ×dZ


 z

with

γ̌(x) = argmin
γ∈R2(pp+1)+dZ

En

[(
Yi − řp(Xi − x, Ti,Zi)

⊤γ
)2
Kh(Xi − x)1(Xi ∈ At)

]
,

where Id denotes the (d × d) identity matrix, 0d1×d2 denotes the (d1 × d2) matrix of zeros,

z takes values on the support of Zi, and řp(Xi − x, Ti,Zi) = [̃rp(Xi − x, Ti,Zi)
⊤, (rp(Xi −

x)⊗Zi)
⊤, Ti · (rp(Xi−x)⊗Zi)

⊤]⊤ contains the full interaction between the polynomial basis

function, the treatment assignment indicator, and the pre-intervention covariates.
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8 Conclusion

We developed pointwise and uniform estimation and inference methods for estimation of

the boundary average treatment effect curve, a causal functional parameter that captures

the heterogeneity of treatment effects in BD designs where assignment to treatment is a

deterministic function of a unit’s bivariate location with respect to a boundary. We also

studied point estimation and inference for the weighted boundary treatment effect (WBATE)

and the largest boundary average treatment effect (LBATE), which offer natural aggregation

measures of treatment effect heterogeneity. The main technical challenge in our analysis was

accounting for the effect of the geometry of the assignment boundary B, which is a one-

dimensional manifold on the plane. Our uniform inference results also relied on a novel

strong approximation theorem that may be of independent interest (Section SA-7 in the

supplemental appendix). Finally, we implement all our methods in the software package

rd2d, available at https://rdpackages.github.io/rd2d/; see Cattaneo et al. [2025c] for

additional software details.
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(a) Confidence Intervals and Bands (b) Treatment Effects Heatmap (c) p-values Heatmap

Figure 2: Estimation and Inference. Outcome: College Enrollment.

(a) Confidence Interval and Bands (b) Heatmap of Treatment Effect (c) Heatmap of P-value

Figure 3: Estimation and Inference. Outcome: Mother’s education (placebo).
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Juliana Londoño-Vélez, Catherine Rodŕıguez, and Fabio Sánchez. Upstream and downstream

impacts of college merit-based financial aid for low-income students: Ser pilo paga in

colombia. American Economic Journal: Economic Policy, 12(2):193–227, 2020.

John P Papay, John B Willett, and Richard J Murnane. Extending the regression-

discontinuity approach to multiple assignment variables. Journal of Econometrics, 161

(2):203–207, 2011.

Sean F Reardon and Joseph P Robinson. Regression discontinuity designs with multiple

rating-score variables. Journal of Research on Educational Effectiveness, 5(1):83–104,

2012.

Maxime Rischard, Zach Branson, Luke Miratrix, and Luke Bornn. Do school districts affect

nyc house prices? identifying border differences using a bayesian nonparametric approach

to geographic regression discontinuity designs. Journal of the American Statistical Asso-

ciation, 116(534):619–631, 2021.

Leon Simon et al. Lectures on geometric measure theory. Centre for Mathematical Analysis,

Australian National University Canberra, 1984.

A.B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2008.

Aad W. van der Vaart and Jon A. Wellner. Weak Convergence and Empirical Processes.

Springer, 1996.

Vivian C Wong, Peter M Steiner, and Thomas D Cook. Analyzing regression-discontinuity

designs with multiple assignment variables: A comparative study of four estimation meth-

ods. Journal of Educational and Behavioral Statistics, 38(2):107–141, 2013.

33



Estimation and Inference in Boundary Discontinuity Designs:

Location-Based Methods

Supplemental Appendix

Matias D. Cattaneo∗ Rocio Titiunik† Ruiqi (Rae) Yu‡

October 31, 2025

Abstract

This supplemental appendix presents more general theoretical results encompassing those reported

in the paper, their theoretical proofs, and other technical results. In particular, it presents a new strong

approximation result for residual-based empirical processes leveraging and extending ideas from Cattaneo

and Yu [2025].

Keywords: regression discontinuity, treatment effects estimation, causal inference.

∗Department of Operations Research and Financial Engineering, Princeton University.
†Department of Politics, Princeton University.
‡Department of Operations Research and Financial Engineering, Princeton University.



Contents

SA-1 Setup 2

SA-1.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

SA-1.2 Mapping Between Paper and Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

SA-2 Preliminary Lemmas 5

SA-3 Boundary Average Treatment Effect Curve 6

SA-3.1 Point Estimation and MSE Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

SA-3.2 Distributional Approximation and Inference . . . . . . . . . . . . . . . . . . . . . . . . . 8

SA-4 Weighted Boundary Average Treatment Effect 10

SA-5 Largest Boundary Average Treatment Effect 11

SA-6 Gaussian Strong Approximation 12

SA-6.1 Definitions for Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

SA-6.2 Residual-based Empirical Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

SA-7 Proofs 15

SA-7.1 Proof of Lemma SA-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

SA-7.2 Proof of Lemma SA-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

SA-7.3 Proof of Lemma SA-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

SA-7.4 Proof of Lemma SA-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

SA-7.5 Proof of Lemma SA-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

SA-7.6 Proof of Theorem SA-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

SA-7.7 Proof of Theorem SA-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

SA-7.8 Proof of Theorem SA-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

SA-7.9 Proof of Theorem SA-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

SA-7.10 Proof of Theorem SA-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

SA-7.11 Proof of Theorem SA-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

SA-7.12 Proof of Lemma SA-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

SA-7.13 Proof of Lemma SA-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

SA-7.14 Proof of Theorem SA-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

SA-7.15 Proof of Theorem SA-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

SA-7.16 Proof of Theorem SA-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

SA-7.17 Proof of Theorem SA-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

SA-7.18 Proof of Theorem SA-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



SA-1 Setup

This supplemental appendix considers a generalized version of the problem studied in the main paper: the

location variable Xi is d-dimensional with d ≥ 1 and support X ⊆ Rd, and the boundary region B is a low

dimensional manifold with “effective dimension” d − 1. The special case considered in the paper is d = 2,

that is, Xi is bivariate and B is a one-dimensional (boundary) curve.

Assumption 1 from the paper is generalized to the following.

Assumption SA–1 (Data Generating Process). Let t ∈ {0, 1}.

(i) (Y1(t),X
⊤
1 )

⊤, . . . , (Yn(t),X⊤
n )

⊤ are independent and identically distributed random vectors with X =
∏d

l=1[al, bl] for −∞ < al < bl <∞ for l = 1, · · · , d.
(ii) The distribution of Xi has a Lebesgue density fX(x) that is continuous and bounded away from zero

on X.

(iii) µt(x) = E[Yi(t)|Xi = x] is (p+ 1)-times continuously differentiable on X.

(iv) σ2
t (x) = V[Yi(t)|Xi = x] is bounded away from zero and continuous on X.

(v) supx∈X E[|Yi(t)|2+v|Xi = x] <∞ for some v ≥ 2.

We partition X into two areas, At ⊂ Rd with t ∈ {0, 1}, which represent the control and treatment regions,

respectively. That is, X = A0 ∪A1, where A0 and A1 are two disjoint regions in Rd. The observed outcome

is Yi = 1(Xi ∈ A0)Yi(0) + 1(Xi ∈ A1)Yi(1). The “boundary” now becomes B = bd(A0) ∩ bd(A1) denotes

the boundary determined by the assignment regions At, t ∈ {0, 1}, where bd(At) denotes the topological

boundary of At. As in the paper, we assume that B belongs to A1, that is, B ⊆ A1 and B ∪A0 = ∅.
The multidimensional generalization of the three causal parameters studied in the paper are:

1. Boundary average treatment effect curve (BATEC):

τ(x) = E[Yi(1)− Yi(0)|Xi = x], x ∈ B ⊆ Rd−1.

2. Weighted Boundary average treatment effect (WBATE):

τWBATE =

∫
B
τ(x)w(x)dHd−1(x)∫
B
w(x)dHd−1(x)

.

3. Largest Boundary average treatment effect (LBATE):

τ(x) = sup
x∈B

τ(x).

More generally, this supplemental appendix also considers the derivatives of the BATEC parameter:

τ (ν)(x) = µ
(ν)
1 (x)− µ

(ν)
0 (x), x ∈ B,

where, using standard multi-index notation, ν = (ν1, . . . , νd)
⊤ ∈ N0 with |ν| = ν1 + . . . + νd ≤ p and

µ
(ν)
t (x) = ∂ν1 · · · ∂νdµt(x) for t ∈ {0, 1}.
The treatment effect estimator process along the boundary (submanifold) is

(
τ̂ (ν)(x) = µ̂

(ν)
1 (x)− µ̂

(ν)
0 (x) : x ∈ B

)
,

2



where µ̂
(ν)
t (x) = e⊤1+ν β̂t(x) for t ∈ {0, 1} with

β̂t(x) = argmin
β∈Rpp+1

En

[(
Yi − rp(Xi − x)⊤β

)2
Kh(Xi − x)1(Xi ∈ At)

]
, x ∈ B,

with pp = (d+p)!
d!p! , rp(u) denotes the pth order polynomial expansion of the d-variate vector u = (u1, · · · , ud)⊤,

Kh(u) = K(u1/h, · · · , ud/h)/hd for a d-variate kernel function K(·) and a bandwidth parameter h.

We impose the following assumption on the d-variate kernel function and assignment boundary (subman-

ifold) B.

Assumption SA–2 (Kernel and Boundary). Let t ∈ {0, 1}.

(i) B is compact (d− 1)-rectifiable, with Hd−1(B) positive and finite.

(ii) K : Rd → [0,∞) is compact supported and Lipschitz continuous or K(u) = 1(u ∈ [−1, 1]d).

(iii) There exists a set U ⊆ Rd, such that K(u) ≥ κ > 0 for all u ∈ U , λmin(
∫
U
rp(z)rp(z)

⊤dz) > 0, and

lim infh↓0 infx∈B

∫
U
K(u)1(x+ hu ∈ At)du ≳ 1.

Note that in case d = 2, if we assume B is a rectifiable curve, then Assumption SA–2 (i) holds.

Under the assumptions imposed,

β̂t(x) = H−1Γ̂
−1

t,xEn

[
rp

(Xi − x

h

)
Kh(Xi − x)Yi1(Xi ∈ At)

]
,

where H = diag((h|v|)0≤|v|≤p) with v running through all d+p

d!p! multi-indices such that |v| ≤ p, and

Γ̂t,x = En

[
rp

(Xi − x

h

)
rp

(Xi − x

h

)⊤
Kh(Xi − x)1(Xi ∈ At)

]
,

where its population analogue is

Γt,x = E

[
rp

(Xi − x

h

)
rp

(Xi − x

h

)⊤
Kh(Xi − x)1(Xi ∈ At)

]
.

Note that
∥∥e⊤1+νH

−1
∥∥
2
=
∥∥e⊤1+νH

−1
∥∥
∞ = h−|ν|. In addition, define

Qt,x = En

[
rp

(
Xi − x

h

)
Kh(Xi − x)1(Xi ∈ At)ui

]
,

where ui = Yi − [1(Xi ∈ A0)µ0(Xi) + 1(Xi ∈ A1)µ1(Xi)] = Yi − E[Yi|Xi].

For x1,x2 ∈ B and t ∈ {0, 1}, we introduce the following quantities:

Σ̂t,x1,x2 = hdEn

[
rp

(Xi − x1

h

)
rp

(Xi − x2

h

)⊤
Kh(Xi − x1)Kh(Xi − x2)ε̂i(x1)ε̂i(x2)1(Xi ∈ At)

]
,

Σt,x1,x2 = hdE
[
rp

(Xi − x1

h

)
rp

(Xi − x2

h

)⊤
Kh(Xi − x1)Kh(Xi − x2)σ

2
t (Xi)1(Xi ∈ At)

]
,

Ω̂
(ν)
t,x1,x2

=
1

nhd+2|ν| e
⊤
1+νΓ̂

−1

t,x1
Σ̂t,x1,x2

Γ̂
−1

t,x2
e1+ν , Ω̂(ν)

x1,x2
= Ω̂

(ν)
0,x1,x2

+ Ω̂
(ν)
1,x1,x2

,

Ω
(ν)
t,x1,x2

=
1

nhd+2|ν| e
⊤
1+νΓ

−1
t,x1

Σt,x1,x2Γ
−1
t,x2

e1+ν , Ω(ν)
x1,x2

= Ω
(ν)
0,x1,x2

+Ω
(ν)
1,x1,x2

,

where ε̂i(x) = Yi − rp(Xi − x)⊤[1(Xi ∈ A0)β̂0(x) + 1(Xi ∈ A1)β̂1(x)].
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Finally, to ensure that various weighted integral functionals on submanifolds (over the assignment bound-

ary B) are well-defined, we impose the following conditions on the weight function.

Assumption SA–3 (Weight Function and Boundary). Let w : B 7→ R with supx∈B |w(x)| <∞, infx∈B |w(x)| >
0, and

∫
B
|w(x)|dHd−1(x) <∞.

SA-1.1 Notation and Definitions

For textbook references on empirical process, see van der Vaart and Wellner [1996], Dudley [2014], and Giné

and Nickl [2016]. For textbook reference on geometric measure theory, see Simon et al. [1984], Federer [2014],

and Folland [2002].

(i) Multi-index Notations. For a multi-index u = (u1, . . . , ud) ∈ Nd, denote |u| =∑d
i=1 ud, u! = Πd

i=1ud.

Denote rp(u) = (1, u1, . . . , ud, u
2
1, . . . , u

2
d, . . . , u

p
1, . . . , u

p
d), that is, all monomials uα1

1 · · ·uαd

d such that

αi ∈ N and
∑d

i=1 αi ≤ p. Define e1+ν to be the pd = (d+p)!
d!p! -dimensional vector such that e⊤1+νrp(u) =

uν for all u ∈ Rd and |ν| ≤ p.

(ii) Norms. For a vector v ∈ Rk, ∥v∥ = (
∑k

i=1 v
2
i )

1/2, ∥v∥∞ = max1≤i≤k |vi|. For a matrix A ∈ Rm×n,

∥A∥p = sup∥x∥p=1 ∥Ax∥p, p ∈ N ∪ {∞}, and λmin(A) denotes its minimum eigenvalue. For a function

f on a metric space (S, d), ∥f∥∞ = supx∈X |f(x)|. For a probability measure Q on (S,S ) and p ≥ 1,

define ∥f∥Q,p = (
∫
S
|f |pdQ)1/p. For a set E ⊆ Rd, denote by m(E) the Lebesgue measure of E.

(iii) Empirical Process. We use standard empirical process notations: En[g(vi)] = 1
n

∑n
i=1 g(vi) and

Gn[g(vi)] = 1√
n

∑n
i=1(g(vi) − E[g(vi)]). Let (S, d) be a semi-metric space. The covering num-

ber N(S, d, ε) is the minimal number of balls Bs(ε) = {t : d(t, s) < ε} needed to cover S. A P-

Brownian bridge is a mean-zero Gaussian random function Wn(f), f ∈ L2(X,P) with the covariance

E[WP(f)WP(g)] = P(fg) − P(f)P(g), for f, g ∈ L2(X,P). A class F ⊆ L2(X,P) is P-pregaussian if

there is a version of P-Brownian bridge WP such that WP ∈ C(F; ρP) almost surely, where ρP is the

semi-metric on L2(X,P) is defined by ρP(f, g) = (∥f−g∥2P,2−(
∫
f dP−

∫
g dP)2)1/2, for f, g ∈ L2(X,P).

(iv) Geometric Measure Theory. For a set E ⊆ X, the De Giorgi perimeter of E related to X is L(E) =

TV{1E},X. For d ∈ N and 0 ≤ m ≤ d, the m-dimensional Hausdorff (outer) measure is given by

Hm(A) = limδ↓0 Hm
δ (A), A ⊆ Rd, where for each δ > 0, Hm

δ (A) is defined by taking Hm
δ (∅) = 0, and

for any non-empty A ⊆ Rd, Hm
δ (A) = πm/2

Γ(m/2+1) inf
∑∞

j=1(diam(Cj)/2)
m, and the infimum is taken

over all countable collections C1, C2, · · · of subsets of Rd such that diam(Cj) < δ and A ⊆ ∪∞
j=1Cj .

Integration against Hm is defined via Carathéodory’s Theorem following the classical measure-theoretic

literature. The Hausdorff dimension dimH(A) of A is defined by dimH(A) = inf{t ≥ 0 : Ht(A) = 0}.
A set A ⊆ Rd is said to be k-rectifiable if A is of Hausdorff dimension k, and there exist a countable

collection {fi} of continuously differentiable maps fi : Rk → Rd such that Hk(E \ ∪∞
i=0fi(R

k)) =

0. B is a rectifiable curve if there exists a Lipschitz continuous function γ : [0, 1] → R such that

B = γ([0, 1]). We define the curve length function of B to be L(B) = supπ∈Π s(π, γ), where Π =

{(t0, t1, . . . , tN ) : N ∈ N, 0 ≤ t0 < t1 < . . . ≤ tN ≤ 1} and s(π, γ) =
∑N

i=0 ∥γ(ti)− γ(ti+1)∥2 for π =

(t0, t1, . . . , tN ).

(v) Bounds and Asymptotics. For reals sequences an = o(bn) if lim sup |an|
|bn| = 0, an ≲ bn if there exists

some constant C and N > 0 such that n > N implies |an| ≤ C|bn|. For sequences of random variables

an = oP(bn) if plimn→∞
an

bn
= 0, |an| ≲P |bn| if lim supM→∞ lim supn→∞ P[|an

bn
| ≥M ] = 0.
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All limits are taken such that h → 0 as n → ∞. Most of our results hold with h fixed but small enough,

but we do not make this distinction explicit to avoid overly-complex statements.

SA-1.2 Mapping Between Paper and Supplement

The results in the paper are special cases of the results in this supplemental appendix as follows.

• Theorem 1 in the paper corresponds to Theorem SA-1 with d = 2.

• Theorem 2 in the paper corresponds to Theorem SA-2 with d = 2.

• Theorem 3 in the paper corresponds to Theorems SA-3 and SA-6 with d = 2.

• Theorem 4 in the paper corresponds to Theorem SA-7 with d = 2.

• Theorem 5 in the paper corresponds to Theorem SA-8 with d = 2.

• Theorem 6 in the paper corresponds to Theorem SA-10 with d = 2.

SA-2 Preliminary Lemmas

Let X = (X⊤
1 , · · · ,X⊤

n ), and recall that t ∈ {0, 1}.

Lemma SA-1 (Invertibility). Suppose Assumption SA–1(i,ii) and Assumption SA–2 hold. Then for t = 0, 1,

lim inf
h→0

inf
x∈B

λmin(Γt,x) > 0.

Lemma SA-2 (Gram). Suppose Assumption SA–1(i,ii) and Assumption SA–2 hold. If log(1/h)
nhd = o(1), then

sup
x∈B

∥∥Γ̂t,x − Γt,x

∥∥ ≲P

√
log(1/h)

nhd
, sup

x∈B

∥∥Γ̂−1

t,x − Γ−1
t,x

∥∥ ≲P

√
log(1/h)

nhd
,

and if further h = o(1), then 1 ≲P infx∈B

∥∥Γ̂t,x

∥∥ ≲ supx∈B

∥∥Γ̂t,x

∥∥ ≲P 1.

Lemma SA-3 (Stochastic Linear Approximation). Suppose Assumption SA–1(i,ii,iv,v) and Assumption SA–

2 hold. Suppose log(1/h)
nhd = o(1), then

sup
x∈B

∣∣Qt,x

∣∣ ≲P

√
log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

,

and if further h = o(1),

sup
x∈B

∣∣µ̂(ν)
t (x)− E

[
µ̂
(ν)
t (x)

∣∣X
]
− e⊤1+νH

−1Γ−1
t,xQt,x

∣∣ ≲P h
−|ν|

√
log(1/h)

nhd

(√
log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

)
.

Lemma SA-4 (Covariance). Suppose Assumptions SA–1 and SA–2 hold. If log(1/h)
nhd = o(1), then

sup
x1,x2∈B

∥∥Σ̂t,x1,x2
−Σt,x1,x2

∥∥ ≲P

√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd
+ hp+1,
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sup
x1,x2∈B

∣∣Ω̂(ν)
x1,x2

− Ω(ν)
x1,x2

∣∣ ≲P (nhd+2|ν|)−1

(√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd
+ hp+1

)
,

and

sup
x∈B

∣∣(Ω̂(ν)
x,x)

−1/2 − (Ω(ν)
x,x)

−1/2
∣∣ ≲P

√
nhd+2|ν|

(√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd
+ hp+1

)
.

Lemma SA-5 (Bias). Suppose Assumption SA–1(i,ii,iii) and Assumption SA–2 hold. If log(1/h)
nhd = o(1)

and h = o(1), then

sup
x∈B

∣∣E[µ̂(ν)
t (x)|X]− µ

(ν)
t (x)

∣∣ ≲P h
p+1−|ν|,

implying

sup
x∈B

∣∣E[µ̂(ν)
t (x)|X]− µ

(ν)
t (x)− hp+1−|ν|B̂(ν)

t,x

∣∣ = oP(h
p+1−|ν|),

with supx∈B

∣∣B̂(ν)
t,x −B

(ν)
t,x

∣∣ ≲P

√
log(1/h)

nhd , and hence supx∈B |B̂(ν)
t,x | ≲P 1.

SA-3 Boundary Average Treatment Effect Curve

SA-3.1 Point Estimation and MSE Expansions

Theorem SA-1 (Convergence Rates). Suppose Assumptions SA–1 and SA–2 hold. If log(1/h)
nhd = o(1) and

h = o(1), then

∣∣τ̂ (ν)(x)− τ (ν)(x)
∣∣ ≲P h

−|ν|
( 1√

nhd
+

1

n
1+v
2+v hd

+ hp+1
)

for x ∈ B, and

sup
x∈B

∣∣τ̂ (ν)(x)− τ (ν)(x)
∣∣ ≲P h

−|ν|
(√ log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

+ hp+1
)
.

The conditional mean-squared error (MSE) is

MSEν(x) = E

[
(τ̂ (ν)(x)− τ (ν)(x))2

∣∣∣X
]

for x ∈ B, and the conditional integrated MSE (IMSE) is

IMSEν =

∫

B

MSEν(x)w(x)dH
d−1(x),

where w(x) satisfies Assumption SA–3. To state the MSE expansions, we introduce some more notation for

the leading bias and variance:

B(ν)
x = B

(ν)
1,x −B

(ν)
0,x , B

(ν)
t,x = e⊤1+νΓ

−1
t,x

∑

|ω|=p+1

µ
(ω)
t (x)

ω!
E

[
rp

(Xi − x

h

)(Xi − x

h

)ω
Kh(Xi − x)

]
,
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where

V (ν)
x = V

(ν)
0,x + V

(ν)
1,x , V

(ν)
t,x = e⊤1+νΓ

−1
t,xΣt,x,xΓ

−1
t,xe1+ν = nhd+2|ν|Ω(ν)

t,x,x.

Theorem SA-2 (MSE Expansions). Suppose Assumptions SA–1, SA–2 and SA–3 hold. If log(1/h)
nhd = o(1)

and h = o(1), then

MSEν(x) =
(
hp+1−|ν|B(ν)

x

)2
+

1

nhd+2|ν|V
(ν)
x + oP

(
h2p+2−2|ν| + n−1h−d−2|ν|)

for x ∈ B, and

IMSEν =

∫

B

[(
hp+1−|νB(ν)

x

)2
+

1

nhd+2|ν|V
(ν)
x

]
w(x)dHd−1(x) + oP

(
h2p+2−2|ν| + n−1h−d−2|ν|).

Theorem SA-2 can be used to develop (feasible) bandwidth selectors. If B̂
(ν)
x ̸= 0, the asymptotic MSE-

optimal bandwidth is

hMSE,ν,p(x) =

(
(d+ 2|ν|)V (ν)

x

(2p+ 2− 2|ν|)(B(ν)
x )2

1

n

) 1
2p+d+2

for x ∈ B. Similarly, if
∫
B
(B

(ν)
x )2w(x)dHd−1(x) ̸= 0, the asymptotic IMSE-optimal bandwidth is

hIMSE,ν,p =

(
(d+ 2|ν|)

∫
B
V

(ν)
x w(x)dHd−1(x)

(2p+ 2− 2|ν|)
∫
B
(B

(ν)
x )2w(x)dHd−1(x)

1

n

) 1
2p+d+2

.

In practice, the the unknown bias and variance quantities can be replaced with (consistent) estimators

thereof. For example, B̂
(ν)
x = B̂

(ν)
1,x − B̂

(ν)
0,x with

B̂
(ν)
t,x = e⊤1+νΓ̂

−1

t,x

∑

|ω|=p+1

µ
(ω)
t (x)

ω!
En

[
rp

(Xi − x

h

)(Xi − x

h

)ω
Kh(Xi − x)

]
,

where the unknown functions µ
(ω)
t (x) can be estimated using higher-order local polynomial estimators, and

V̂
(ν)
x = V̂

(ν)
0,x + V̂

(ν)
1,x with

V̂
(ν)
t,x = e⊤1+νΓ̂

−1

t,xΣ̂t,x,xΓ̂
−1

t,xe1+ν ,

which corresponds to a standard variance estimator (which is also used for asymptotic inference as discussed

below).

Finally, notice that the pointwise convergence rate and MSE expansion can be obtained under the slightly

weaker side rate condition nhd → ∞. We do not make this distinction explicit to simplify the exposition.
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SA-3.2 Distributional Approximation and Inference

Let W = ((X⊤
1 , Y1), · · · , (X⊤

n , Yn)), and recall that t ∈ {0, 1}. For |ν| ≤ p, define the feasible t-statistic

T̂
(ν)

(x) =
τ̂ (ν)(x)− τ (ν)(x)√

Ω̂
(ν)
x,x

, x ∈ B.

The associated 100(1− α)% confidence interval estimator is

Î
(ν)

α (x) =

[
τ̂ (ν)(x)−qα

√
Ω̂

(ν)
x,x , τ̂

(ν)(x) +qα

√
Ω̂

(ν)
x,x

]
,

where qα denotes an appropriate quantile depending on the desired confidence level α ∈ (0, 1), and coverage

objective (pointwise vs. uniform over B). The following theorem establishes pointwise asymptotic normality

and validity of confidence intervals. Let Φ(·) be the cumulative distribution function of a standard univariate

Gaussian random variable.

Theorem SA-3 (Confidence Intervals). Suppose Assumptions SA–1 and SA–2 hold. If nhd → ∞ and

nhdh2(p+1) → 0, then

sup
u∈R

∣∣∣P
(
T̂

(ν)
(x) ≤ u

)
− Φ(u)

∣∣∣ = o(1), x ∈ B,

and

P
(
τ (ν)(x) ∈ Î

(ν)

α (x)
)
= 1− α+ o(1), x ∈ B,

provided that qα = inf{c > 0 : P(|Ẑ| ≥ c|W) ≤ α} with Ẑ|W ∼ Normal(0, Ω̂
(ν)
x,x).

For uniform inference, we rely on a new strong approximation result established in Section SA-6. First,

we simplify the statistic T̂
(ν)

, which is not directly a sum of independent random variables. Let

T
(ν)

(x) = En

[
(Ω(ν)

x,x)
−1/2e⊤1+νH

−1
[
1(Xi ∈ A1)Γ

−1
1,x − 1(Xi ∈ A0)Γ

−1
0,x

]
rp

(Xi − x

h

)
Kh(Xi − x)ui

]
,

where recall that ui = Yi −
∑

t∈{0,1} 1(Xi ∈ At)µt(Xi) = E[Yi|Xi].

Theorem SA-4 (Stochastic Linearization). Suppose Assumptions SA–1 and SA–2 hold. If log(1/h)

n
v

2+v hd
= o(1)

and h = o(1), then

sup
x∈B

∣∣∣T̂
(ν)

(x)− T
(ν)

(x)
∣∣∣ ≲P h

p+1
√
nhd +

√
log(1/h)

(√ log(1/h)

nhd
+

log(1/h)

n
v

2+v hd

)
.

We can now exploit the linear structure of (T
(ν)

(x) : x ∈ B), that is, an average of i.n.i.d. random vectors.

Define the following functions indexed by x ∈ B:

gx(u) = 1(u ∈ A1)K
(ν)
1 (u;x)− 1(u ∈ A0)K

(ν)
0 (u;x), u ∈ X,
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and

K
(ν)
t (u;x) = n−1/2(Ω(ν)

x,x)
−1/2e⊤1+νH

−1Γ−1
t,xrp

(
u− x

h

)
Kh(u− x), u ∈ X, t ∈ {0, 1}.

Define the associated class of functions G = {gx : x ∈ B} and R = {Id}, where Id(x) = x, for all x ∈ R.

Then, the residual-based empirical process is

Rn(g, r) = n−1/2
n∑

i=1

[
g(Xi)r(Yi)− g(Xi)E[r(Yi)|Xi]

]
, g ∈ G, r ∈ R,

and therefore

T
(ν)

(x) = Rn(gx, Id), x ∈ B.

Leveraging ideas in Cattaneo and Yu [2025], Theorem SA-11 gives a new Gaussian strong approximation

that can be applied to our current setup. Specifically, our new theorem allows for polynomial moment bound

on the conditional distribution of Yi|Xi.

Theorem SA-5 (Gaussian Strong Approximation: T
(ν)

). Suppose Assumptions SA–1 and SA–2 hold, and

that there exists a constant C > 0 such that for t ∈ {0, 1} and for any x ∈ B, the De Giorgi perimeter

of the set Et,x = {y ∈ At : (y − x)/h ∈ Supp(K)} satisfies L(Et,x) ≤ Chd−1. If lim infn→∞
log h
logn > −∞

and nhd → ∞ as n → ∞, then (on a possibly enlarged probability space) there exists a mean-zero Gaussian

process Z(ν) indexed by B with almost surely continuous sample path such that

E

[
sup
x∈B

∣∣T(ν)
(x)− Z(ν)(x)

∣∣
]
≲ (log n)

3
2

(
1

nhd

) 1
2d+2 · v

v+2

+ log(n)

(
1

n
v

2+v hd

) 1
2

,

where ≲ is up to a universal constant, and Z(ν) has the same covariance structure as T
(ν)

; that is,

Cov[T
(ν)

(x1),T
(ν)

(x2)] = Cov[Z(ν)(x1), Z
(ν)(x2)] for all x1,x2 ∈ B.

Theorem SA-5 can be used to construct confidence bands for (τ (ν)(x) : x ∈ B). Let (Ẑ(ν)(x) : x ∈ B) be

a (conditionally on W) mean-zero Gaussian process with feasible (conditional) covariance function

Cov
[
Ẑ(ν)(x1), Ẑ

(ν)(x2)
∣∣∣W
]
=

Ω̂
(ν)
x1,x2√

Ω̂
(ν)
x1,x1Ω̂

(ν)
x2,x2

, x1,x2 ∈ B.

Theorem SA-6 (Confidence Bands). Suppose the assumptions and conditions in Theorem SA-5 hold. If

lim infn→∞
log h
logn > −∞, (logn)3

n
v

2+v hd
= o(1) and hp+1

√
nhd = o(1), then

sup
u∈R

∣∣∣P
(
sup
x∈B

∣∣T̂(ν)
(x)
∣∣ ≤ u

)
− P

(
sup
x∈B

∣∣Ẑ(ν)(x)
∣∣ ≤ u

∣∣∣W
)∣∣∣ = oP(1)

and

P

[
τ (ν)(x) ∈ Î

(ν)

α (x), for all x ∈ B
]
= 1− α+ o(1),

provided that qα = inf
{
c > 0 : P

(
supx∈B

∣∣Ẑ(ν)(x)
∣∣ ≥ c

∣∣W
)
≤ α

}
.
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SA-4 Weighted Boundary Average Treatment Effect

Without loss of generality, we set
∫
B
w(b)dHd−1(b) = 1, and the parameter of interest is the (weighted)

average treatment effect along the boundary:

τWBATE =

∫

B

τ(b)w(b)dHd−1(b),

where the weight function w : X 7→ R satisfies Assumption SA–3.

The (weighted) boundary average treatment effect estimator along the boundary is

τ̂WBATE =

∫

B

τ̂(b)w(b) dHd−1(b),

Our first lemma in this section studies the conditional bias of τWBATE. Let

BWBATE = B1,WBATE −B0,WBATE, Bt,WBATE =

∫

B

B
(0)
t,bw(b)dH

d−1(b),

for t ∈ {0, 1}.

Lemma SA-6 (Bias: WBATE). Suppose Assumption SA–1(i)-(iii), SA–2 and SA–3 hold. If log(1/h)
nhd = o(1)

and h = o(1), then

E[τ̂WBATE|X]− τWBATE = hp+1BWBATE + oP(h
p+1).

The next lemma studies the conditional variance of τWBATE, and a plug-in estimator thereof. Let

ΩWBATE = Ω1,WBATE +Ω0,WBATE, Ωt,WBATE =

∫

B

∫

B

Ω
(0)
t,b1,b2

w(b1)w(b2)dH
d−1(b1)dH

d−1(b2)

and

Ω̂WBATE = Ω̂1,WBATE + Ω̂0,WBATE, Ω̂t,WBATE =

∫

B

∫

B

Ω̂
(0)
t,b1,b2

w(b1)w(b2)dH
d−1(b1)dH

d−1(b2),

for t ∈ {0, 1}.

Lemma SA-7 (Variance: WBATE). Suppose Assumptions SA–1, SA–2 and SA–3 hold. If log(1/h)
nhd = o(1)

and h = o(1), then

V[τ̂WBATE|X] = ΩWBATE +OP

(
hd−1 log(1/h)

1/2

(nhd)3/2

)
= ΩWBATE + oP((nh)

−1),

where

(nh)−1 ≲ ΩWBATE ≲ (nh)−1.

If, in addition, log(1/h)

n
v

2+v hd
= o(1), then

V[τ̂WBATE|X] = Ω̂WBATE + oP((nh)
−1).
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Theorem SA-7 (MSE Expansion: WBATE). Suppose Assumptions SA–1, SA–2 and SA–3 hold. If
log(1/h)

n
v

2+v hd
= o(1) and h = o(1), then

E[(τ̂WBATE − τWBATE)
2|X] = ΩWBATE + h2p+2B2

WBATE
+ oP((nh)

−1) + oP(h
2p+2).

MSE-optimal bandwidth selection follows directly from Theorem SA-7.

For inference, we consider the feasible t-statistics

T̂WBATE =
τ̂WBATE − τWBATE√

Ω̂WBATE

.

Theorem SA-8 (Asymptotic Normality: WBATE). Suppose Assumptions SA–1, SA–2 and SA–3 hold. If
log(1/h)

n
v

2+v hd
= o(1) and nh2p+3 = o(1), then

sup
u∈R

∣∣P(T̂WBATE ≤ u)− Φ(u)
∣∣ = o(1).

SA-5 Largest Boundary Average Treatment Effect

Consider the maximum treatment effect over the boundary, defined by

τLBATE = sup
b∈B

τ(b).

Theorem SA-9 (Convergence Rate: LBATE). Suppose Assumptions SA–1 and SA–2 hold. If log(1/h)
nhd =

o(1) and h = o(1), then

∣∣τ̂LBATE − τLBATE
∣∣ ≲P

√
log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

+ hp+1.

Recall from Section SA-3.2 that (Ẑ(x) : x ∈ B) is a (conditionally on W) mean-zero Gaussian process

with feasible (conditional) covariance function

Cov
[
Ẑ(x1), Ẑ(x2)

∣∣∣W
]
=

Ω̂x1,x2√
Ω̂x1,x1

Ω̂x2,x2

, x1,x2 ∈ B.

Consider the confidence interval given by

Îα,LBATE =

[
sup
b∈B

(
τ̂(b)−qα

√
Ω̂b,b

)
, sup

b∈B

(
τ̂(b) +qα

√
Ω̂b,b

)]
,

where qα = inf
{
c > 0 : P

(
supx∈B

∣∣Ẑ(x)
∣∣ ≥ c

∣∣W
)
≤ α

}
.

Theorem SA-10 (Confidence Interval: LBATE). Suppose the assumptions and conditions in Theorem SA-5

hold. If lim infn→∞
log h
logn > −∞, (logn)3

n
v

2+v hd
= o(1) and hp+1

√
nhd = o(1), then

P

[
τLBATE ∈ Îα,LBATE

]
≥ 1− α+ o(1).
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SA-6 Gaussian Strong Approximation

We present a Gaussian strong approximation theorem, which is the key technical tool behind Theorem SA-5.

The theorem builds on and generalizes the results in Cattaneo and Yu [2025]. Consider the residual-based

empirical process given by

Rn[g, r] =
1√
n

n∑

i=1

[
g(xi)r(yi)− E[g(xi)r(yi)|xi]

]
, g ∈ G, r ∈ R,

where G and R are classes of functions satisfying certain regularity conditions.

SA-6.1 Definitions for Function Spaces

Let F be a class of measurable functions from a probability space (Rq,B(Rq),P) to R. We introduce several

definitions that capture properties of F.

(i) F is pointwise measurable if it contains a countable subset G such that for any f ∈ F, there exists a

sequence (gm : m ≥ 1) ⊆ G such that limm→∞ gm(u) = f(u) for all u ∈ Rq.

(ii) Let Supp(F) = ∪f∈F Supp(f). A probability measure QF on (Rq,B(Rq)) is a surrogate measure for

P with respect to F if

(i) QF agrees with P on Supp(P) ∩ Supp(F).

(ii) QF(Supp(F) \ Supp(P)) = 0.

Let QF = Supp(QF).

(iii) For q = 1 and an interval I ⊆ R, the pointwise total variation of F over I is

pTVF,I = sup
f∈F

sup
P≥1

sup
PP∈I

P−1∑

i=1

|f(ai+1)− f(ai)|,

where PP = {(a1, . . . , aP ) : a1 ≤ · · · ≤ aP } denotes the collection of all partitions of I.

(iv) For a non-empty C ⊆ Rq, the total variation of F over C is

TVF,C = inf
U∈O(C)

sup
f∈F

sup
ϕ∈Dq(U)

∫

Rq

f(u) div(ϕ)(u)du/∥∥ϕ∥2∥∞,

where O(C) denotes the collection of all open sets that contains C, and Dq(U) denotes the space of

infinitely differentiable functions from Rq to Rq with compact support contained in U.

(v) For a non-empty C ⊆ Rq, the local total variation constant of F over C, is a positive number KF,C

such that for any cube D ⊆ Rq with edges of length ℓ parallel to the coordinate axises,

TVF,D∩C ≤ KF,Cℓ
d−1.
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(vi) For a non-empty C ⊆ Rq, the envelopes of F over C are

MF,C = sup
u∈C

MF,C(u), MF,C(u) = sup
f∈F

|f(u)|, u ∈ C.

(vii) For a non-empty C ⊆ Rq, the Lipschitz constant of F over C is

LF,C = sup
f∈F

sup
u1,u2∈C

|f(u1)− f(u2)|
∥u1 − u2∥∞

.

(viii) For a non-empty C ⊆ Rq, the L1 bound of F over C is

EF,C = sup
f∈F

∫

C

|f |dP.

(ix) For a non-empty C ⊆ Rq, the uniform covering number of F with envelope MF,C over C is

NF,C(δ,MF,C) = sup
µ
N(F, ∥·∥µ,2 , δ ∥MF,C∥µ,2), δ ∈ (0,∞),

where the supremum is taken over all finite discrete measures on (C,B(C)). We assume thatMF,C(u)

is finite for every u ∈ C.

(x) For a non-empty C ⊆ Rq, the uniform entropy integral of F with envelope MF,C over C is

JC(δ,F,MF,C) =

∫ δ

0

√
1 + log NF,C(ε,MF,C)dε,

where it is assumed that MF,C(u) is finite for every u ∈ C.

(xi) For a non-empty C ⊆ Rq, F is a VC-type class with envelope MF,C over C if (i) MF,C is measurable

and MF,C(u) is finite for every u ∈ C, and (ii) there exist cF,C > 0 and dF,C > 0 such that

NF,C(ε,MF,C) ≤ cF,Cε
−dF,C , ε ∈ (0, 1).

If a surrogate measure QF for P with respect to F has been assumed, and it is clear from the context, we

drop the dependence on C = QF for all quantities in the previous definitions. That is, to save notation, we

set TVF = TVF,QF
, KF = KF,QF

, MF = MF,QF
, MF(u) =MF,QF

(u), LF = LF,QF
, and so on, whenever there is

no confusion.

SA-6.2 Residual-based Empirical Process

The following theorem generalizes Cattaneo and Yu [2025, Theorem 2] by requiring only bounded polynomial

moments for yi conditional on xi.

Theorem SA-11 (Strong Approximation for Residual-based Empirical Processes). Suppose (zi = (xi, yi) :

1 ≤ i ≤ n) are i.i.d. random vectors taking values in (Rd+1,B(Rd+1)) with common law PZ , where xi has

distribution PX supported on X ⊆ Rd, yi has distribution PY supported on Y ⊆ R, supx∈X E[|yi|2+v|xi =

x] ≤ 2 for some v > 0, and the following conditions hold:

13



(i) G is a real-valued pointwise measurable class of functions on (Rd,B(Rd),PX).

(ii) There exists a surrogate measure QG for PX with respect to G such that QG = m ◦ ϕG, where the

normalizing transformation ϕG : QG 7→ [0, 1]d is a diffeomorphism.

(iii) G is a VC-type class with envelope MG over QG with cG ≥ e and dG ≥ 1.

(iv) R is a real-valued pointwise measurable class of functions on (R,Borel(R),PY ).

(v) R is a VC-type class with envelope MR,Y over Y with cR,Y ≥ e and dR,Y ≥ 1, where MR,Y(y) +

pTVR,(−|y|,|y|) ≤ v(1 + |y|) for all y ∈Y, for some v > 0.

(vi) There exists a constant k such that | log2 EG| + | log2 TV| + | log2 MG| ≤ k log2 n, where the constant

TV = max{TVG, TVG×UR,QG
} with UR = {θ(·, r, τ) : r ∈ R, τ ∈ (0,∞]}, and θ(x, r, τ) = E[r(yi)1(|yi| ≤

τ)|xi = x] for x ∈ X.

Define the residual based empirical process

Rn(g, r) =
1√
n

n∑

i=1

g(xi)(r(yi)− E[r(yi)|xi]), g ∈ G, r ∈ R.

Then (1) on a possibly enlarged probability space, there exists a sequence of mean-zero Gaussian processes

(ZR
n (g, r) : g ∈ G, r ∈ R) with almost sure continuous trajectories such that:

• E[Rn(g1, r1)Rn(g2, r2)] = E[ZR
n (g1, r1)Z

R
n (g2, r2)] for all (g1, r1), (g2, r2) ∈ G ×R, and

• E
[ ∥∥Rn − ZR

n

∥∥
G×R

]
≤ Cvd log(cn)ρn,

with

ρn =
√
d log(cn) r

v
v+2
n (

√
MGEG)

2
v+2 + MGn

− v/2
2+v +

MG√
n

(√
MGEG

rn

) 2
v+2

,

where C is a positive universal constant, c = cG + cR,Y + k, d = dGdR,Yk, and

rn = min
{ (cd1Md+1

G TVdEG)
1/(2d+2)

n1/(2d+2)
,
(c

d/2
1 c

d/2
2 MGTV

d/2EGL
d/2)1/(d+2)

n1/(d+2)

}
,

c1 = d sup
x∈QG

d−1∏

j=1

σj(∇ϕG(x)), c2 = sup
x∈QG

1

σd(∇ϕG(x))
, L = max{LG, LG×UR,QR

};

and (2) if R is a singleton, then we can replace TV and L in the previous conditions and statements by

TVsing = max{TVG, TVG×VR,QG
}, and Lsing = max{LG, LG×VR,QR

}, respectively, with VR = {θ(·, r) : r ∈ R},
and θ(x, r) = E[r(yi)|xi = x] for x ∈ X.

Remark SA-1. The class UR comprises truncated conditional means at all truncation levels. Its Lipschitz

and total-variation constants can be bounded, for example, if f(y | x) is Lipschitz in x uniformly over (x, y)

in the support of (xi, yi). When R is a singleton, it suffices to assume regularity only for VR, the class

containing the (untruncated) conditional mean functions, which is easily justified.
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SA-7 Proofs

SA-7.1 Proof of Lemma SA-1

Assumption SA–1 (ii) implies

Γt,x = E

[
rp

(Xi − x

h

)
rp

(Xi − x

h

)⊤
Kh(Xi − x)1(Xi ∈ At)

]

=

∫

At

rp

(u− x

h

)
rp

(u− x

h

)⊤
Kh(u− x)f(u)du

= f(x)

∫

At

rp

(u− x

h

)
rp

(u− x

h

)⊤
Kh(u− x)du+ o(1),

where in the last line we have used
∫
At
(u−x

h )vKh(u − x)du = O(1) for any multi-index v from standard

change of variable argument.

I. Polynomial Representation of Minimum Eigenvalue

For simplicity, call

St,x = lim
h→0

St,x(h), St,x(h) =

∫

At

rp

(u− x

h

)
rp

(u− x

h

)⊤
Kh(u− x)du.

A change of variable gives

St,x(h) =

∫
rp(z)rp(z)

⊤K(z)1(x+ hz ∈ At)dz.

Let a ∈ Rpp , where pp = (d+p)!
d!p! . Then the equivalent representation of minimum eigenvalue gives

λmin(St,x(h)) = min
∥a∥=1

∫
(a⊤rp(z))

2K(z)1(x+ hz ∈ At)dz

≥ κ min
∥a∥=1

∫

U

(a⊤rp(z))
2
1(x+ hz ∈ At)dz, (SA-1)

where in the last line we have used K(u) ≥ κ for all u ∈ U .

II. Mass Retaining Ratio in Treatment/Control Region

Denote Eh(x, t) = {z ∈ U : x+hz ∈ At}. Assumption SA–2 (ii) implies there is some upper bound Λ > 0

of K(·). Hence for c0 = 1/2 lim infh↓0 infx∈B

∫
U
K(u)1(x+ hu ∈ At)du, we have

Λm(Eh(x, t)) ≥
∫

U

K(u)1(x+ hu ∈ At) ≥ c0

for small enough h, which implies

m(Eh(x, t)) ≥ αm(U), α =
c0

Λm(U)
. (SA-2)

III. L2 Integral of Polynomials in Full v.s. Treatment/Control Regions
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Consider S = {f ∈ Pp :
∫
U
f(u)2du = 1}, where Pp is the collection of all p-order polynomials. Let

(ϕj , 1 ≤ j ≤ p) be a set of orthonormal basis of (Pp, ∥·∥L2). Then T (a) =
∑p

j=1 ajϕj is an isometry. Since

T (S) = {a ∈ Rp : ∥a∥ = 1} is compact, S is also compact in (Pp, ∥·∥L2). Since Pp is p-dimensional,

equivalent of norms implies that S is also compact in (Pp, ∥·∥L∞
). Now consider

Φq(ε) = m({u ∈ U : |q(u)| < ε}), q ∈ S, ε > 0,

and

ψ(q) = sup
{
ε > 0 : Φq(ε) ≤

α

2
m(U)

}
.

Since
∫
U
q2 = 1 and q is polynomial, limε↓0 Φq(ε) = 0 and Φq(∥q∥∞) = m(U). Continuity and Lipchitzness

of q ∈ S imply ψ(q) > 0 for all q ∈ S.

Next, we want to show ψ is lower-semicontinous function on (Pp, ∥·∥L∞
). Suppose qn → q uniformly on

U . For every ε0 ∈ (0, ψ(q)), there exists η > 0 such that Φq(ε0) ≤ α
2m(U)−η. Continuity of polynomials and

the fact that level sets of polynomials have zero Lebesgue measure imply 1{|qn|<ε0}(·) → 1{|q|<ε0}(·) almost

surely. By Dominated Convergence Theorem, Φqn(ε0) → Φq(ε0). Hence for large enough n, Φqn(ε0) ≤
α
2m(U), which implies ε0 ≤ ψ(qn). This implies lim infn→∞ ψ(qn) ≥ ε0. Since ε0 is arbitrary in (0, ψ(q)), we

have lim infn→∞ ψ(qn) ≥ ψ(q).

Compactness of S and lower-semicontinuity of ψ implies ψ attains its minimum on S. Since ψ(q) > 0 for

all q ∈ S, we know ε∗ = infq∈S ψ(q) > 0. Then for every q ∈ S,

∫

Eh(x,t)

q2 ≥ ε2∗ m
(
Eh(x, t) \ {|q| ≤ ε∗}

)

≥ ε2∗

(
m(Eh(x, t))−m({|q| ≤ ε∗})

)

≥ ε2∗
α

2
m(U).

Scaling q from S gives

∫

Eh(x,t)

q2 ≥ ε2∗
α

2

∫

U

q2, q ∈ Pp. (SA-3)

IV. Lower Bound of Minimum Eigenvalue

Equations (SA-1), (SA-2) and (SA-3) together give for small enough h,

inf
x∈B

λmin(St,x(h)) ≥ κ inf
x∈B

min
∥a∥=1

∫

Eh(x,t)

(a⊤rp(z))
2dz,

≥ κε2∗
α

2
min
∥a∥=1

∫

U

(a⊤rp(z))
2dz

≥ κε2∗
α

2
λmin

(∫

U

rp(z)rp(z)
⊤dz

)
,

which implies lim infh→0 infx∈B λmin(St,x(h)) > 0.

16



SA-7.2 Proof of Lemma SA-2

Since Γ̂t,x is a finite dimensional matrix, it suffices to show the stated rate of convergence for each entry.

Let v be a multi-index such that |v| ≤ 2p. Define

gn(ξ,x) =

(
ξ − x

h

)v
1

hd
K

(
ξ − x

h

)
1(ξ ∈ At), ξ ∈ X,x ∈ B.

and F = {gn(·,x) : x ∈ B}. We will show F is a VC-type of class. In order to do this, we study the

following quantities.

Constant Envelope Function. We assumeK is continuous and has compact support, orK = 1(· ∈ [−1, 1]d).

Hence there exists a constant C1 such that for all l ∈ F, for all x ∈ B, |l(x)| ≤ C1h
−d = F .

Diameter of F in L2. supl∈F ∥l∥P,2 = supx∈B(
∫

At−x

h

1
hdy

2vK(y)2fX(x + hy)dy)1/2 ≤ C2h
−d/2 for some

constant C2. We can take C1 large enough so that σ = C2h
−d/2 ≤ F = C1h

−d.

Ratio. For some constant C3, δ =
σ
F = C3

√
hd.

Covering Numbers. Case 1: K is Lipschitz. Let x,x′ ∈ B. Then, for a generic evaluation points

x = (x1, . . . , xd)
⊤ and x′ = (x′1, . . . , x

′
d)

⊤,

sup
ξ∈X

|gn(ξ,x)− gn(ξ,x
′)| ≤

∣∣∣∣
(ξ1 − x1

h

)v1

· · ·
(ξ − xd

h

)vd

−
(ξ1 − x′1

h

)v1
· · ·
(ξ − x′d

h

)vd

∣∣∣∣Kh(ξ − x)

+
(ξ1 − x′1

h

)v1
· · ·
(ξ − x′d

h

)vd
∣∣∣Kh(ξ − x)−Kh(ξ − x′)

∣∣∣

≲ h−d−1∥x− x′∥∞,

since we have assumed that K has compact support and is Lipschitz continuous. Hence, for any ε ∈ (0, 1]

and for any finitely supported measure Q and metric ∥·∥Q,2 based on L2(Q),

N(F, ∥·∥Q,2 , ε ∥F∥Q,2) ≤ N(X, ∥·∥∞, ε ∥F∥Q,2 h
d+1)

(i)

≲

(
diam(X)

ε ∥F∥Q,2 h
d+1

)d

≲

(
diam(X)

εh

)d

,

where in (i) we used the fact that ε ∥F∥Q,2 h
d+1 ≲ εh ≲ 1. Hence, F forms a VC-type class, and taking

A1 = diam(X)/h and A2 = d, supQN(F, ∥·∥Q,2 , ε ∥F∥Q,2) ≲ (A1/ε)
A2 , ε ∈ (0, 1], and where the supremum

is over all finite discrete measure.

Case 2: K = 1(· ∈ [−1, 1]d). Consider

mn(ξ,x) =
(ξ − x

h

)v 1

hd
1(ξ ∈ At), ξ,x ∈ X,

M = {mn(·,x) : x ∈ B} and the constant envelope function M = C4h
−|v|−d, for some constant C4 only

depending on diameter of X. The same argument as before shows that for any discrete measure Q, we have

N(M, ∥·∥Q,2 , ε ∥M∥Q,2) ≤ N(X, ∥·∥∞, ε ∥M∥Q,2 h
d+|v|+1) ≲

( diam(X)

ε ∥M∥Q,2 h
d+|v|+1

)d
≲
(diam(X)

εh

)d
.

The class G = {1(· − x ∈ [−1, 1]d) : x ∈ B} has VC dimension no greater than 2d [van der Vaart and

Wellner, 1996, Example 2.6.1], and by van der Vaart and Wellner [1996, Theorem 2.6.4], for any discrete
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measure Q, N(G, ∥·∥Q,2 , ε) ≤ 2d(4e)2dε−4d, 0 < ε ≤ 1. It then follows that for any discrete measure Q,

N(F, ∥·∥Q,2 , ε ∥H∥Q,2) ≲ N(H , ∥·∥Q,2 , ε/2 ∥H∥Q,2) +N(G, ∥·∥Q,2 , ε/2) ≲ 2dh−dε−d + 2d(32e)dε−4d.

Hence, taking A1 = (2dh−d + 2d(32e)d)h−|v| and A2 = 4d, supQN(F, ∥·∥Q,2 , ε ∥F∥Q,2) ≲ (A1/ε)
A2 , ε ∈

(0, 1], where the supremum is over all finite discrete measure.

Maximal Inequality. By Corollary 5.1 in Chernozhukov et al. [2014b] for the empirical process on class F,

E

[
sup
x∈B

∣∣En[gn(Xi,x)]− E[gn(Xi,x)]
∣∣
]
≲

σ√
n

√
A2 log(A1/δ) +

∥F∥P,2A2 log(A1/δ)

n

≲

√
log(1/h)

nhd
+

log(1/h)

nhd
,

whereA1, A2, σ, F, δ are all given previously. Assuming log(h−1)
nhd → 0 as n→ ∞, we conclude that supx∈B

∥∥Γ̂t,x−
Γt,x

∥∥ ≲P

√
log(1/h)

nhd . Hence, 1 ≲P infx∈B

∥∥Γ̂t,x

∥∥ ≲P supx∈B

∥∥Γ̂t,x

∥∥ ≲P 1. ByWeyl’s Theorem, supx∈B |λmin(Γ̂t,x)−

λmin(Γt,x)| ≤ supx∈B

∥∥Γ̂t,x − Γt,x

∥∥ ≲P

√
log(1/h)

nhd . Assuming that λmin(Γt,x) ≳ 1 (which we will ver-

ify in the last part of the proof), then we can lower the minimum eigenvalue by infx∈B λmin(Γ̂t,x) ≥
infx∈B λmin(Γt,x) − supx∈B |λmin(Γ̂t,x) − λmin(Γt,x)| ≳P 1. It follows that supx∈B

∥∥Γ̂−1

t,x

∥∥ ≲P 1 and hence

supx∈B

∥∥Γ̂−1

t,x − Γ−1
t,x

∥∥ ≤ supx∈B

∥∥Γ−1
t,x

∥∥∥∥Γt,x − Γ̂t,x

∥∥∥∥Γ̂−1

t,x

∥∥ ≲P

√
log(1/h)

nhd .

SA-7.3 Proof of Lemma SA-3

The proof is similar to the proof of Lemma SA-2. Let v be a multi-index such that 0 ≤ |v| ≤ p. Let

gn(ξ,x) =
(ξ − x

h

)v
Kh(ξ − x)1(ξ ∈ At), ξ,x ∈ X.

Define the class of functions F = {(ξ, u) ∈ X × R 7→ gn(ξ,x) : x ∈ B}.

Envelope Function. Since K is continuous on its compact support, there exists a constant C1 > 0 such

that |gn(ξ,x)u| ≤ C1h
−d|u|, for ξ,x ∈ X and u ∈ R. We define the envelope function F (ξ, u) = C1h

−d|u|,
for ξ ∈ X and u ∈ R. Moreover, by Assumption SA–1(v), let M = max1≤i≤n F (Xi, ui), then

E[M2]1/2 ≲ h−dE
[
max
1≤i≤n

|ui|2
]1/2

≲ h−dE
[
max
1≤i≤n

|ui|2+v
]1/(2+v)

≲ n1/(2+v)h−d.

Diameter of F in L2. Recall we denote ui = Yi − E[Yi|Xi], then

sup
l∈F

E[l(Xi, ui)
2]1/2 ≤ sup

ξ∈X

E[u2i |Xi = ξ]1/2 sup
ξ∈X

E[gn(Xi, ξ)
2]1/2 ≤ C3h

−d/2 = σ.

Ratio. We set δ = σ
∥F∥

P,2
≲ hd/2.

Covering Numbers. Case 1: K is Lipschitz. Let Q be a finite distribution on (X × R,B(X)⊗ Borel(R)).

Let x,x′ ∈ X. In the proof of Lemma SA-2, we showed that supξ∈X supx,x′∈X
|gn(ξ,x)−gn(ξ,x

′)|
∥x−x′∥∞

≲ h−d−1.

Hence,

∥gn(Xi,x)ui − gn(Xi,x
′)ui∥Q,2 ≤ ∥gn(·,x)− gn(·,x′)∥∞ ∥ui∥Q,2 ≲ h−1 ∥F∥Q,2 ∥x− x′∥∞.
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It follows that supQN(F, ∥·∥Q,2, ϵ∥F∥Q,2) ≲ (diam(X)
ϵh ))d, where sup is over all finite probability distributions

on (X × R,B(X)⊗ Borel(R)). Letting A1 = diam(X)
h and A2 = d, we conclude that

sup
Q
N(F, ∥·∥Q,2 , ϵ ∥F∥Q,2) ≲ (A1/ϵ)

A2 , ϵ ∈ (0, 1].

Case 2: K is the uniform kernel. Let

mn(ξ,x) =

(
ξ − x

h

)v
1

hd
1(ξ ∈ At), ξ,x ∈ X,

with M = {(ξ, u) ∈ X × R → mn(ξ,x)u : x ∈ B} and envelop function M(x, u) = C1h
−d−|v||u|, for a

positive constant C1 depending only on K. By similar arguments as Case 1 and the proof of Lemma SA-2, it

follows that supQN(M, ∥·∥Q,2 , ε∥M∥Q,2) ≲
(diam(X)

εh

)d
, where the supremum is taken over all finite discrete

measures. Taking G = {1(· − x ∈ [−1, 1]d) : x ∈ B}, the proof of Lemma SA-2 shows that

sup
Q
N(G, ∥·∥Q,2 , ε) ≤ 2d(4e)2dε−4d, ε ∈ [0, 1],

where the supremum is taken over all finite discrete measures. Taking A1 = (2dh−d + 2d(32e)d)h−|v| and

A2 = 4d, we have

sup
Q
N(F, ∥·∥Q,2 , ε ∥F∥Q,2) ≲ (A1/ε)

A2 , ε ∈ (0, 1],

the supremum is over all finite discrete measure.

Maximal Inequality. By Corollary 5.1 in Chernozhukov et al. [2014b],

E

[
sup
x∈X

∣∣En[gn(Xi,x)ui]
∣∣
]
≲

σ√
n

√
A2 log(A1/δ) +

∥M∥P,2A2 log(A1/δ)

n

≲

√
log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

.

Since Qt,x is finite-dimensional, entry-wise convergence implies convergence in norm with the same rate.

Hence, supx∈X

∥∥Qt,x

∥∥ ≲P

√
log(1/h)

nhd + log(1/h)

n
1+v
2+v hd

. By Lemma SA-2,

sup
x∈X

∣∣µ̂(ν)
t (x)− E[µ̂

(ν)
t (x)|X]− e⊤1+νH

−1Γ−1
t,xQt,x

∣∣ = sup
x∈X

∣∣e⊤1+νH
−1
(
Γ̂
−1

t,x − Γ−1
t,x

)
Qt,x

∣∣

≲P h
−|ν|

√
log(1/h)

nhd

(√ log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

)
,

and

sup
x∈X

∣∣µ̂(ν)
t (x)− E[µ̂

(ν)
t (x)|X]

∣∣ ≲P h
−|ν|

(√ log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

)
,

which completes the proof.
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SA-7.4 Proof of Lemma SA-4

Let ηi(x) =
∑

t∈{0,1} 1(Xi ∈ At)(µt(Xi)−β̂t(x)
⊤Rp(Xi−x)). Then, for all x,y ∈ B, the difference between

the estimated and true variance matrices is

Σ̂t,x,y −Σt,x,y = M1,x,y +M2,x,y +M3,x,y +M4,x,y

where

M1,x,y = En

[
rp

(Xi − x

h

)
rp

(Xi − y

h

)⊤ 1

hd
K
(Xi − x

h

)
K
(Xi − y

h

)
ηi(x)ηi(y)1(Xi ∈ At)

]
,

M2,x,y = En

[
rp

(Xi − x

h

)
rp

(Xi − y

h

)⊤ 1

hd
K
(Xi − x

h

)
K
(Xi − y

h

)
(ηi(x) + ηi(y))ui1(Xi ∈ At)

]
,

M3,x,y = En

[
rp

(Xi − x

h

)
rp

(Xi − y

h

)⊤ 1

hd
K
(Xi − x

h

)
K
(Xi − y

h

)
(u2i − σt(Xi)

2)1(Xi ∈ At)
]
,

M4,x,y = En

[
rp

(Xi − x

h

)
rp

(Xi − y

h

)⊤ 1

hd
K
(Xi − x

h

)
K
(Xi − y

h

)
σt(Xi)

2
1(Xi ∈ At)

]

− E

[
rp

(Xi − x

h

)
rp

(Xi − y

h

)⊤ 1

hd
K
(Xi − x

h

)
K
(Xi − y

h

)
σt(Xi)

2
1(Xi ∈ At)

]
.

For u and v multi-indices, let gn(Xi;x,y) =
1
hd (

Xi−x
h )u(Xi−y

h )vK(Xi−x
h )K(Xi−y

h )1(Xi ∈ At). Set

Rn =

√
log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

.

First, we present a bound on max1≤i≤n |ηi(x)|1((Xi−x)/h ∈ Supp(K)). By Lemma SA-5 and Lemma SA-

3, and multi-index ν such that |ν| ≤ p,

sup
x∈B

|e⊤1+ν µ̂t(x)− e⊤1+νµt(x)| ≲P h
−|ν|(hp+1 +Rn).

Since K is compactly supported, we have

max
1≤i≤n

∣∣∣
∑

t∈{0,1}
1(Xi ∈ At)(β̂t(x)− βt(x))

⊤Rp(Xi − x)1((Xi − x)/h ∈ Supp(K))
∣∣∣ ≲P h

p+1 +Rn.

Since µt is p+ 1 times continuously differentiable,

max
1≤i≤n

∣∣∣
∑

t∈{0,1}
1(Xi ∈ At)(µt(Xi)− βt(x)

⊤Rp(Xi − x))1((Xi − x)/h ∈ Supp(K))
∣∣∣ ≲ hp+1.

It follows that

sup
x∈B

max
1≤i≤n

|ηi(x)|1((Xi − x)/h ∈ Supp(K)) ≲P h
p+1 +Rn.

Term M1,x,y. From the proof for Lemma SA-2, supx,y∈X

∣∣En[gn(Xi;x,y)]−E[gn(Xi;x,y)]
∣∣ ≲P

√
log(1/h)

nhd .

Moreover, supx,y∈X

∣∣E[gn(Xi;x,y)]
∣∣ ≲P 1. Hence supx,y∈X

∣∣En[gn(Xi;x,y)]
∣∣ ≲P 1. Thus,

sup
x,y∈B

∣∣En[gn(Xi;x,y)ηi(x)ηi(y)]
∣∣ ≤ sup

x∈X

max
1≤i≤n

|ηi(x)|1((Xi − x)/h ∈ Supp(K)) · sup
x,y∈X

∣∣En[gn(Xi;x,y)]
∣∣
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≲P (hp+1 +Rn)
2,

where we have used Theorem SA-1, which does not depend on this lemma, for supx∈B

∣∣µ̂t(x) − µt(x)
∣∣ ≲P

hp+1 +Rn. Finite dimensionality of M1,x,y then implies

sup
x,y∈B

∥M1,x,y∥ ≲P (hp+1 +Rn)
2.

Term M2,x,y. From the proof of Lemma SA-3, supx,y∈X

∣∣En[gn(Xi;x,y)ui] − E[gn(Xi;x,y)ui]
∣∣ ≲P Rn.

Moreover, supx,y∈X

∣∣E[gn(Xi;x,y)ui]big∥ ≲P 1. Hence, supx,y∈X

∣∣En[gn(Xi;x,y)ui]
∣∣ ≲P 1. Thus,

sup
x,y∈B

∣∣En[gn(Xi;x,y)(ηi(x) + ηi(y))ui]
∣∣ ≤ sup

x,y∈B

∣∣µ̂t(x)− µt(x)
∣∣ sup
x,y∈B

En[|gn(Xi;x,y)ui|] ≲P h
p+1 +Rn,

which implies that

sup
x,y∈B

∥M2,x,y∥ ≲P h
p+1 +Rn.

Term M3,x,y. Define ln(·, ·;x,y) : X × R → R as

ln(ξ, ε;x,y) =
1

hd

(ξ − x

h

)u(ξ − y

h

)v
K
(ξ − x

h

)
K
(ξ − y

h

)
1(ξ ∈ At)(ε

2 − σ2
t (ξ)),

and consider the function class L = {ln(·, ·;x,y) : x,y ∈ X}. Let L : X×R → R be L(ξ, ε) = c
hd |ε2−σ2

t (ξ)|
with c = supx,y∈B

∣∣( ξ−x

h

)u( ξ−y

h

)v
K
(
ξ−x

h

)
K
(
ξ−y

h

)∣∣. By similar argument as in the proof for Lemma SA-3,

we can show L is a VC-type class such that E[ln(Xi, ui;x,y)] = 0, for all x,y ∈ X,

sup
x,y∈X

E[ln(Xi, ε;x,y)
2]

1
2 ≲ sup

x,y∈B

E[gn(Xi, ui;x,y)
2]

1
2 sup
ξ∈X

V[u2i |Xi = ξ] ≲ h−d/2

and

E
[
max
1≤i≤n

L(Xi, ui)
2
] 1

2 ≲ h−dE
[
max
1≤i≤n

u4i
]1/2

≲ h−dE
[
max
1≤i≤n

u2+v
i

] 2
2+v ≲ h−dn

2
2+v .

Applying Corollary 5.1 in Chernozhukov et al. [2014b], we obtain

sup
x,y∈B

∣∣En[ln(Xi, ui;x,y)]
∣∣ ≲P

√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd

and

sup
x,y∈B

∥M3,x,y∥ ≲P

√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd
.

Term M4,x,y. Notice that {gn(·;x,y)σ2
t (·) : x,y ∈ B} is a VC-type of class with constant enve-

lope function Ch−d for some positive constant C, where supx,y∈B supξ∈X |gn(ξ;x,y)σ2(ξ)| ≲ h−d and
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supx,y∈B E[gn(Xi;x,y)
2σt(Xi)

2]
1
2 ≲ h−d/2. Then, similar to the proof of M1,x,y, we conclude that

sup
x,y∈B

∣∣En[gn(Xi;x,y)]− E[gn(Xi;x,y)]
∣∣ ≲

√
log(1/h)

nhd

and

sup
x,y∈B

∥M4,x,y∥ ≲

√
log(1/h)

nhd
.

Final result. Combining the the upper bounds of the four terms,

sup
x,y∈B

∥∥Σ̂1,x,y −Σ1,x,y

∥∥ ≲P h
p+1 +

√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd
,

which implies supx,y∈B ∥Σ̂1,x,y∥ ≲P 1. It follows that

sup
x,y∈B

|Ω̂(ν)
1,x,y − Ω

(ν)
1,x,y| ≤

1

nhd+2|ν|

(
sup

x,y∈B

∥∥Γ̂−1

1,x − Γ−1
1,x

∥∥∥∥Σ̂1,x,y

∥∥∥∥Γ̂−1

1,y

∥∥

+ sup
x,y∈B

∥∥Γ−1
1,x

∥∥∥∥Σ̂1,x,y −Σ1,x,y

∥∥∥∥Γ̂−1

1,y

∥∥

+ sup
x,y∈B

∥∥Γ−1
1,x

∥∥∥∥Σ1,x,y

∥∥∥∥Γ̂−1

1,y − Γ−1
1,y

∥∥
)

≤ 1

nhd+2|ν|

(
hp+1 +

√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd

)
.

By Assumption SA–1(iv) and Assumption SA–2(ii), infx∈B Ω
(ν)
x,x ≳P (nhd+2|ν|)−1. Therefore, infx∈B Ω̂

(ν)
x,x ≳

(nhd+2|ν|)−1. Furthermore,

sup
x∈B

∣∣∣
√
Ω̂

(ν)
x,x −

√
Ω

(ν)
x,x

∣∣∣ ≲P sup
x∈B

√
nhd+2|ν|

∣∣∣Ω̂(ν)
x,x − Ω(ν)

x,x

∣∣∣ ≲P

1√
nhd+2|ν|

(
hp+1 +

√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd

)

and

sup
x∈B

∣∣∣∣∣∣
h−|ν|
√
Ω̂

(ν)
x,x

− h−|ν|
√

Ω
(ν)
x,x

∣∣∣∣∣∣
= h−|ν| sup

x∈B

∣∣∣∣∣∣

√
Ω̂

(ν)
x,x −

√
Ω

(ν)
x,x√

Ω̂
(ν)
x,xΩ

(ν)
x,x

∣∣∣∣∣∣
≲P

√
nhd

(
hp+1 +

√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd

)
,

which completes the proof.

SA-7.5 Proof of Lemma SA-5

Define

χt,x = En

[
rp

(Xi − x

h

)
Kh(Xi − x)1(Xi ∈ At)rt(Xi;x)

]
, rt(ξ;x) = µt(ξ)−

∑

0≤|ω|≤p

µ
(ω)
t (x)

ω!
(ξ − x)ω.

22



Since µt is (p+ 1)-times continuously differentiable, there exists αx,Xi,t ∈ Rp+1 such that

∥∥χt,x

∥∥2 =
∥∥∥ 1
n

n∑

i=1

rp

(Xi − x

h

)
Kh(Xi − x)1(Xi ∈ At)rp

(Xi − x

h

)⊤
(0⊤,α⊤

x,Xi,t)
⊤
∥∥∥
2

h2(p+1)

≤
(
En

[∥∥∥rp
(Xi − x

h

)
Kh(Xi − x)1(Xi ∈ At)rp

(Xi − x

h

)⊤∥∥∥
2])(

En

[
∥αx,Xi,t∥2

])
h2(p+1),

where supx∈B maxt∈{0,1} max1≤i≤n ∥αx,Xi,t∥ ≲ 1. Since log(1/h)
nhd = o(1), the same argument as the proof of

Lemma SA-2 shows

En

[∥∥∥rp
(Xi − x

h

)
Kh(Xi − x)1(Xi ∈ At)rp

(Xi − x

h

)⊤∥∥∥
2]

≲P 1.

It then follows from Lemma SA-2 that

sup
x∈B

∣∣E[µ̂(ν)
t (x)|X]− µ

(ν)
t (x)

∣∣ = sup
x∈B

∣∣e⊤1+νH
−1Γ̂

−1

t,xχt,x

∣∣ ≲P h
p+1−|ν|.

Now also assume that h = o(1). Then, for all x ∈ B and ξ ∈ X,

1 (Kh(ξ − x) ̸= 0)

∣∣∣∣γv(ξ;x)−
|v|
v!
∂vµt(x)

∣∣∣∣ ≤
|v|
v!

sup
∥u−u′∥≤h

|∂vµt(u)− ∂vµt(u
′)| =Mn,

where γv(ξ;x) =
|v|
v!

∫ 1

0
(1−t)|v|−1∂vµt(x+t(ξ−x))dt. By Assumption SA–1(iii), ∂vµt is uniformly continuous

on the compact set X. This implies that when h = o(1), Mn = o(1). Letting

χ̃t,x = En

[
rp

(Xi − x

h

)
Kh(Xi − x)1(Xi ∈ At)(

∑

|v|=p+1

|v|
v!
∂vµt(x)(Xi − x)v)

]
,

we conclude that

sup
x∈B

∥∥χt,x − χ̃t,x

∥∥ ≲Mn sup
x∈B

∥∥∥En

[
rp

(Xi − x

h

)
Kh(Xi − x)1(Xi ∈ At)

( ∑

|v|=p+1

|v|
v!

|Xi − x|v
)]∥∥∥ = oP(h

p+1),

where the last equality employs the same arguments as in the proof of Lemma SA-2. Hence,

sup
x∈B

∣∣∣E[µ̂(ν)
t (x)|X]− µ

(ν)
t (x)− hp+1−|ν|B̂(ν)

t,x

∣∣∣ = sup
x∈B

∣∣∣e⊤1+νH
−1Γ̂

−1

t,xχt,x − e⊤1+νH
−1Γ̂

−1

t,xχ̃t,x

∣∣∣ = oP(h
p+1−|ν|).

Using Lemma SA-2 and the maximal inequality as in the proof of Lemma SA-2, we conclude that

max
t∈{0,1}

sup
x∈B

∣∣B̂(ν)
t,x −B

(ν)
t,x

∣∣ ≲P

√
log(1/h)

nhd
.

Since maxt∈{0,1} supx∈B |B(ν)
t,x | ≲ 1, it follows that maxt∈{0,1} supx∈B |B̂(ν)

t,x | ≲P 1.

SA-7.6 Proof of Theorem SA-1

The results follow from Lemma SA-5 and Lemma SA-3.
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SA-7.7 Proof of Theorem SA-2

For the conditional bias, by Lemma SA-5,

sup
x∈B

∣∣E
[
τ̂ (ν)(x)− τ (ν)(x)

∣∣X
]2 − (hp+1−|ν|B(ν)

x )2
∣∣

≤ sup
x∈B

∣∣E
[
τ̂ (ν)(x)− τ (ν)(x)

∣∣X
]
− hp+1−|ν|B(ν)

x

∣∣ · sup
x∈B

∣∣E
[
τ̂ (ν)(x)− τ (ν)(x)

∣∣X
]
+ hp+1−|ν|B(ν)

x

∣∣

= oP(h
p+1−|ν|).

Since supx∈B |B(ν)
t,x −B

(ν)
t,x | ≲P

√
log(1/h)

nhd from Lemma SA-5,

sup
x∈B

∣∣E
[
τ̂ (ν)(x)− τ (ν)(x)

∣∣X
]2 − (hp+1−|ν|B(ν)

x )2
∣∣ = oP(h

p+1−|ν|).

For the conditional variance, by Lemma SA-4,

sup
x∈B

∣∣V
[
τ̂ (ν)(x)

∣∣X
]
− (nhd+2|ν|)−1V (ν)

x

∣∣ = oP((nh
d+2|ν|)−1).

The pointwise MSE expansion follows directly. For the IMSE expansion, notice that

∣∣∣ IMSEν −
∫

B

[
(hp+1−|ν|B(ν)

x )2 + (nhd+2|ν|)−1V (ν)
x

]
w(x)dHd−1(x)

∣∣∣

≤
∫

B

|w(x)|dHd−1(x) · sup
x∈B

∣∣MSEν(x)− (hp+1−|ν|B(ν)
x )2 − (nhd+2|ν|)−1V (ν)

x

∣∣

= oP
(
h2p+2−2|ν| + (nhd+2|ν|)−1

)
,

which completes the proof.

SA-7.8 Proof of Theorem SA-3

We have T
(ν)

(x) =
∑n

i=1 Zi with

Zi =
∑

t∈{0,1}
n−1(Ω(ν)

x,x)
−1/2e⊤1+νH

−1Γ−1
t,xrp

(Xi − x

h

)
Kh(Xi − x)1(Xi ∈ At)ui,

where E[Zi] = 0 and V[Zi] = n−1. By the Berry-Essen Theorem,

sup
u∈R

∣∣∣P
(
T

(ν)
(x) ≤ u

)
− Φ(u)

∣∣∣ ≲ B−1
n

n∑

i=1

E[|Zi|3],

where Bn =
∑n

i=1 V[Zi] = 1. Moreover,

n∑

i=1

E[|Zi|3] = n−3(Ω(ν)
x,x)

−3/2
n∑

i=1

E

[∣∣∣
∑

t∈{0,1}
e⊤1+νH

−1Γ−1
t,xrp

(
Xi − x

h

)
Kh (Xi − x)1(Xi ∈ At)ui

∣∣∣
3]

≲ n−3(Ω(ν)
x,x)

−3/2
n∑

i=1

E

[∣∣∣
∑

t∈{0,1}
e⊤1+νH

−1Γ−1
t,xrp

(
Xi − x

h

)
Kh (Xi − x)1(Xi ∈ At)

∣∣∣
3]
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≲ n−2h−|ν|−d(Ω(ν)
x,x)

−3/2E

[∣∣∣
∑

t∈{0,1}
e⊤1+νH

−1Γ−1
t,xrp

(
Xi − x

h

)
Kh (Xi − x)1(Xi ∈ At)

∣∣∣
2]

≲ n−1h−|ν|−d(Ω(ν)
x,x)

−1/2

≲ (nhd)−1/2,

where the second line uses Assumption SA–1(v), the third line uses

∣∣∣∣
∑

t∈{0,1}
e⊤1+νH

−1Γ−1
t,xrp

(
Xi − x

h

)
Kh (Xi − x)1(Xi ∈ At)

∣∣∣∣ ≲ h−|ν|−d

and the fourth line uses the definition of Ω
(ν)
x,x.

Finally, although Lemma SA-2 through Lemma SA-4 provide convergence results uniformly in x, for

pointwise results with fix x ∈ B, we can replace the class of functions in those proofs by one containing a

singleton (corresponding to the evaluation point x). Thus, we obtain the following result:

∣∣∣T̂
(ν)

(x)− T
(ν)

(x)
∣∣∣ ≲P h

p+1
√
nhd + 1/

√
nhd + 1/(n

v
2+v hd), (SA-4)

provided that hp+1
√
nhd → 0 and n

v
2+v hd → 0.

The final results follow by weak convergence to a Gaussian distribution, and properties of the distribution

function.

SA-7.9 Proof of Theorem SA-4

For all x ∈ B, we have T̂
(ν)

(x) = T
(ν)

(x) +G
(ν)
1 (x) +G

(ν)
2 (x), where

G
(ν)
1 (x) =

(
E
[
τ̂ (ν)(x)

∣∣X
]
− τ (ν)(x)

)
(Ω̂(ν)

x,x)
−1/2,

and

G
(ν)
2 (x) = e⊤1+νH

−1
[(
Γ̂
−1

1,xQ1,x − Γ̂
−1

0,xQ0,x

)
(Ω̂(ν)

x,x)
− 1

2 −
(
Γ−1
1,xQ1,x − Γ−1

0,xQ0,x

)
(Ω(ν)

x,x)
− 1

2

]
.

By Lemma SA-5 and Lemma SA-4,

sup
x∈B

∣∣G(ν)
1 (x)

∣∣ ≲P h
p+1−|ν|(nhd+2|ν|)1/2 ≲ hp+1

√
nhd.

By Lemma SA-2, Lemma SA-3 and Lemma SA-4,

sup
x∈B

∣∣∣e⊤1+νH
−1
[
Γ̂
−1

t,x − Γ−1
t,x

]
Qt,x(Ω̂

(ν)
x,x)

−1/2
∣∣∣ ≲P

√
log(1/h)

(√
log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

)

and

sup
x∈B

∣∣∣e⊤1+νH
−1Γ−1

t,xQt,x

[
(Ω̂(ν)

x,x)
−1/2 − (Ω(ν)

x,x)
−1/2

]∣∣∣

≲P h
−|ν| ·

(√
log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

)
·
√
nhd+2ν

(√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd
+ hp+1

)
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≲
log(1/h)√

nhd
+

(log(1/h))3/2

n
v

2+v hd
.

The result now follows from combining the bounds above.

SA-7.10 Proof of Theorem SA-5

We verify the high-level conditions of Theorem SA-11. We will employ the following technical lemma.

Lemma SA-8 (VC Class to VC2 Class). Assume F is a VC class on a measure space (X,B): there exists

an envelope function F and positive constants c(F), d(F) such that for all ε ∈ (0, 1),

sup
Q
N(F, ∥·∥Q,1 , ε ∥F∥Q,1) ≤ c(F)ε−d(F),

where the supremum is taken over all finite discrete measures. Then, F is also VC2 class: for all ε ∈ (0, 1),

sup
Q
N(F, ∥·∥Q,2 , ε ∥F∥Q,2) ≤ c(F)(ε2/2)−d(F),

where the supremum is taken over all finite discrete measures.

Proof of Lemma SA-8. Let Q be a finite discrete probability measure. Let f, g ∈ F. Then,
∫
|f−g|2dQ ≤

2
∫
|f − g||F |dQ. Define another probability measure Q̃(ck) = F (ck)Q(ck)/ ∥F∥Q,1 on the support of Q,

denoted by {c1, . . . , ck, . . .}. Then,
∫

|f − g|2dQ ≤ 2 ∥F∥Q,1

∫
|f − g|dQ̃ ≤ 2 ∥F∥Q,1 ∥f − g∥Q̃,1 .

Hence, if we take an ε2/2-net in (F, ∥·∥Q̃,1) with cardinality no greater than c(F)ε−d(F), then for any f ∈ F,

there exists a g ∈ F such that ∥f − g∥Q̃,1 ≤ ε2/2 ∥F∥Q̃,1, and hence

∥f − g∥2Q,2 ≤ 2ε2/2 ∥F∥Q,1 ∥F∥Q̃,1 ≤ ε2 ∥F∥2Q,2 ,

which gives the result.

Without loss of generality, we assume X = [0, 1]d, and QFt = PX is a valid surrogate measure for PX with

respect to Ft, and ϕFt = Id is a valid normalizing transformation (as in ). This implies the constants c1 and

c2 from Theorem SA-11 are all 1.

Consider first the class of functions Ft = {K (ν)
t (·;x) : x ∈ B}, for t ∈ {0, 1}.

Envelope Function. By Lemma SA-2 and Lemma SA-4 and the fact that Supp(K) is compact,

sup
x∈B

sup
ξ∈X

∣∣K (ν)
t (ξ;x)

∣∣ ≲ 1√
nhd+ν

sup
x∈B

(
∥Γ−1

1,x∥+ ∥Γ−1
0,x∥

)
sup
x∈B

∣∣(Ω(ν)
x,x)

− 1
2

∣∣ ≲ h−d/2.

Hence, there exists a constant C1 > 0 such that MFt
= C1h

−d/2 is a constant envelope function.

L1 Bound. We have EFt
= supx∈B E[|K (ν)

t (Xi;x)|] ≲ hd/2.
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Uniform Variation. Case 1: K is Lipschitz. By Assumption SA–1(iv) and Assumption SA–2,

LFt
= sup

x∈B

sup
ξ,ξ′∈X

|K (ν)
t (ξ;x)− K

(ν)
t (ξ′;x)|

∥ξ − ξ′∥∞
≲ h−d/2−1.

Each entry of Γt,x and Σt,x are of the form
∫
( ξ−x

h )u+vKh(ξ − x)1(ξ ∈ At)f(ξ)dξ and
∫
( ξ−x

h )u+vKh(ξ −
x)σt(ξ)

2
1(ξ ∈ At)dξ for some multi-index u and v, respectively. Hence, by Assumption SA–2, each entry of

Γt,x and Σt,x are h−1-Lipschitz in x. It follows that there exists a constant C2 such that for all x,x′ ∈ B,

∥∥Γ−1
t,x − Γ−1

t,x′

∥∥ ≤ ∥Γ−1
t,x∥∥Γt,x − Γt,x∥∥Γ−1

t,x′∥ ≤ C2h
−1 ∥x− x′∥ .

Also, by definition of Ωt,x and Assumption SA–2(iv), there exists C3 such that for all x,x′ ∈ X,

∣∣Ω(ν)
t,x − Ω

(ν)
t,x′

∣∣ ≤ C3(nh
d+2|ν|+1)−1∥x− x′∥∞,

and

∣∣(Ω(ν)
t,x )

−1/2 − (Ω
(ν)
t,x′)

−1/2
∣∣ ≤ 1

2
inf
z∈X

(Ω
(ν)
t,z )

−3/2
∣∣Ω(ν)

t,x − Ω
(ν)
t,x′

∣∣ ≤ 1

2
C3h

−1(nhd+2|ν|)1/2∥x− x′∥∞.

It then follows that we have a uniform Lipschitz property with respect to the point of evaluation:

lFt
= sup

ξ∈X

sup
x,x′∈B

∣∣∣K (ν)
t (ξ;x)− K

(ν)
t (ξ;x′)

∣∣∣
∥x− x′∥∞

≲ h−d/2−1.

Let x ∈ B. Then, K
(ν)
t (·;x) is supported on x+ c[−h, h]d. Then,

TVFt
≲ m

(
c[−h, h]d

)
LFt

≲ hd/2−1

Case 2: K = 1(· ∈ [−1, 1]d). Consider

K̃
(ν)
t (u;x) = n−1/2(Ω(ν)

x,x)
−1/2e⊤1+νH

−1Γ−1
t,xrp

(u− x

h

)
h−d, u ∈ X, t ∈ {0, 1}.

Then, K (ν)(u;x) = K̃ (ν)(u;x)1(u− x ∈ [−1, 1]d) for all u ∈ X and x ∈ B, and we set F̃t = {K̃ (ν)(·;x) :
x ∈ B}, t ∈ {0, 1}. Then, the argument above implies that TVF̃t

≲ m
(
c[−h, h]d

)
LFt ≲ hd/2−1. Next, set

L = {1((· − x)/h ∈ [−1, 1]d) : x ∈ B}. Then, using a product rule, we have

TVFt
≤ TVF̃t

ML + MF̃t
TVL ≲ hd/2−1 · 1 + h−d/2hd−1 ≲ hd/2−1.

VC-type Class. Case 1: K is Lipschitz. We apply Cattaneo et al. [2024, Lemma 7]. To make the notation

consistent, define

fx(·) =
1√
nΩ

(ν)
x,x

e⊤1+νH
−1Γ−1

t rp (·)K (·) , x ∈ B,

and H = {gx
( ·−x

h

)
: x ∈ B}. Notice that fx(

·−x
h ) = hd 1√

nΩ
(ν)
x,x

e⊤1+νH
−1Γ−1rp(

·−x
h )Kh(· − x). Then, the

following conditions in Cattaneo et al. [2024, Lemma 7] hold (for z, z′, z′′ ∈ X):
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(i) boundedness: supz supz′ |fz(z′)| ≤ c,

(ii) compact support: supp(fz(·)) ⊆ [−c, c]d,

(iii) Lipschitz continuity: supz |fz(z′)− fz(z
′′)| ≤ c|z′ − z′′| and supz |fz′(z)− fz′′(z)| ≤ ch−1|z′ − z′′|,

and therefore there exists a constant c′ only depending on c and d that for any 0 ≤ ε ≤ 1,

sup
Q
N
(
H, ∥·∥Q,1 , (2c+ 1)d+1ε

)
≤ c′ε−d−2 + 1,

where the supremum is taken over all finite discrete measures on X = [0, 1]d. It then follows from Lemma SA-

8 that with the constant envelope function MFt
= h−d/2, for any 0 ≤ ε ≤ 1,

sup
Q
N
(
Ft, ∥·∥Q,2 , (2c+ 1)d+1εMFt

)
≤ c′22d+4ε−2d−4 + 1,

where the supremum is taken over all finite discrete measures.

Case 2: Suppose K = 1(· ∈ [−1, 1]d). Recall F̃t and L defined in the analysis of uniform variation. The

same argument as before shows

sup
Q
N
(
F̃t, ∥·∥Q,2 , (2c+ 1)d+1εMF̃t

)
≤ c′22d+4ε−2d−4 + 1, ε ∈ (0, 1],

where the supremum is taken over all finite discrete measures, and F̃t = h−d/2. By van der Vaart and

Wellner [1996, Example 2.6.1], the class L = {1((·−x)/h ∈ [−1, 1]d) : x ∈ B} has VC dimension no greater

than 2d, and by van der Vaart and Wellner [1996, Theorem 2.6.4],

sup
Q
N(L , ∥·∥Q,2 , ε) ≤ 2d(4e)2dε−4d, 0 < ε ≤ 1,

where the supremum is taken over all finite discrete measures on X = [0, 1]d. Putting together, we have

sup
Q
N(Ft, ∥·∥Q,2 , εC1MF̃t

) ≤ C2ε
−4d,

where C1, C2 are constants only depending on d, and the supremum is taken over all finite discrete measures

on X = [0, 1]d.

Consider next the class of functions G = {gx : x ∈ B}, where gx(u) = 1(u ∈ A1)K
(ν)
1 (u;x) − 1(u ∈

A0)K
(ν)
0 (u;x). We have immediately that MG ≲ h−d/2, EG ≲ hd/2, and

sup
Q
N(G, ∥·∥Q,2 , ε(2c+ 1)d+1MG) ≤ 2c′ε−4d−4 + 2,

where the supremum is taken over all finite discrete measures.

Total Variation. Observe that 1(u ∈ At)K
(ν)
t (u;x) ̸= 0 implies Et,x = u ∈ {y ∈ At : (y − x)/h ∈

Supp(K)}, and 1(u ∈ At)K
(ν)
t (u;x) = 1(u ∈ Et,x)K

(ν)
t (u;x), for all u ∈ X. By the assumption that the

De Giorgi perimeter of Et,x satisfies L (Et,x) ≤ Chd−1 and using TV{gf} ≤ M{g}TV{f} + M{f}TV{g} for any
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two functions g and f , we have

TVG = sup
x∈B

TV{gx} ≤ sup
x∈B

∑

t∈{0,1}
TV{1AtK

(ν)
t (·;x)} ≤ sup

x∈B

∑

t∈{0,1}
TV{K

(ν)
t (·;x)} + MFt

TV{1Et,x} ≲ hd/2−1.

We completed the verification of all the high-level sufficient conditions of Theorem SA-11, which immedi-

ately give the result.

SA-7.11 Proof of Theorem SA-6

The proof is divided in three technical lemmas.

Lemma SA-9 (KS Distance Between T
(ν)

and Z(ν)). Suppose the conditions of Theorem SA-5 hold. Then,

for any multi-index |ν| ≤ p,

sup
u∈R

∣∣∣P
(
sup
x∈B

∣∣T(ν)
(x)
∣∣ ≤ u

)
− P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u

)∣∣∣ ≲
(
(log n)

3
2

( 1

nhd

) 1
d+2 · v

v+2

+ log(n)

√
1

n
v

v+2hd

)1/2

.

Proof of Lemma SA-9. Let Rn = (log n)
3
2 ( 1

nhd )
1

d+2 · v
v+2 +log(n)

√
1

n
v

2+v hd
, and an positive sequence to be

determined below. For any u > 0,

P

(
sup
x∈B

∣∣T(ν)
(x)
∣∣ ≤ u

)

≤ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ sup

x∈B

∣∣T(ν)
(x)− Z(ν)(x)

∣∣+ u
)

≤ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u+ an

)
+ P

(
sup
x∈B

∣∣Z(ν)(x)− T
(ν)

(x)
∣∣ > an

)

≤ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u

)
+ 4an

(
E

[
sup
x∈B

∣∣Z(ν)(x)
∣∣
]
+ 1
)
+ P

(
sup
x∈B

∣∣Z(ν)(x)− T
(ν)

(x)
∣∣ > an

)

≤ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u

)
+ 4an

(
E

[
sup
x∈B

∣∣Z(ν)(x)
∣∣
]
+ 1
)
+
CRn

an
,

where in the fourth line we have used the Gaussian Anti-concentration Inequality in [Chernozhukov et al.,

2014a, Theorem 2.1], and in the last line we have used the tail bound in Theorem SA-5. Similarly, for any

u > 0, we have the lower bound

P

(
sup
x∈B

∣∣T(ν)
(x)
∣∣ ≤ u

)

≥ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u− sup

x∈B

∣∣T(ν)
(x)− Z(ν)(x)

∣∣
)

≥ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u− an

)
− P

(
sup
x∈B

∣∣Z(ν)(x)− T
(ν)

(x)
∣∣ > an

)

≥ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u

)
− 4an

(
E

[
sup
x∈B

∣∣Z(ν)(x)
∣∣
]
+ 1
)
− P

(
sup
x∈B

∣∣Z(ν)(x)− T
(ν)

(x)
∣∣ > an

)

≥ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u

)
− 4an

(
E

[
sup
x∈B

∣∣Z(ν)(x)
∣∣
]
+ 1
)
− CRn

an
.

Notice that Z(ν)(x),x ∈ B is a mean-zero Gaussian process satisfying

E
[(
Z(ν)(x)− Z(ν)(y)

)2] 1
2 = E

[
(K (Xi,x)− K (Xi,y))

2σ(Xi)
2
] 1

2 ≤ C ′ln,2∥x− y∥∞,
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where C ′ is a constant and ln,2 ≍ h−1, and hence

sup
x∈B

E
[(
Z(ν)(x)− Z(ν)(y)

)2] 1
2 = sup

x∈B

E
[
K (Xi,x)

2σ2(Xi)
]
≲ 1.

Then, by Corollary 2.2.8 in van der Vaart and Wellner [1996], we have E
[
supx∈B

∣∣Z(ν)(x)
∣∣] ≲ 1. Choosing

an ≍
√
Rn, the result now follows.

Lemma SA-10 (KS Distance Between T̂
(ν)

and T
(ν)

). Suppose the conditions in Theorem SA-5 hold. Then,

for any multi-index |ν| ≤ p,

sup
u∈R

∣∣∣P
(
sup
x∈B

∣∣T̂(ν)
(x)
∣∣ ≤ u

)
− P

(
sup
x∈B

∣∣T(ν)
(x)
∣∣ ≤ u

)∣∣∣ = o(1).

Proof of Lemma SA-10. Let Rn = (log n)
3
2 ( 1

nhd )
1

d+2 · v
v+2 + log(n)

√
1

n
v

2+v hd
and

an = o

(√
log(1/h)

(√
n−1h−d log(1/h) +

log(1/h)

n
v

2+v hd

)
+ hp+1

√
nhd

)
.

Then, supx∈B

∣∣T(ν)
(x)− T̂(x)

∣∣ = oP(an). Hence, for any u > 0,

P

(
sup
x∈B

∣∣T̂(x)
∣∣ ≤ u

)

≤ P

(
sup
x∈B

∣∣T(ν)
(x)
∣∣ ≤ u+ an

)
+ P

(
sup
x∈B

∣∣T(ν)
(x)− T̂(x)

∣∣ ≥ an

)

≤ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u+ an

)
+
√
Rn + o(1)

≤ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u

)
+ 4an

(
E

[
sup
x∈B

∣∣Z(ν)(x)
∣∣
]
+ 1
)
+
√
Rn + o(1)

≤ P

(
sup
x∈B

∣∣T(ν)
(x)
∣∣ ≤ u

)
+ 4an

(
E

[
sup
x∈B

∣∣Z(ν)(x)
∣∣
]
+ 1
)
+ 2
√
Rn + o(1),

where the third line uses Lemma SA-9 and supx∈B

∣∣T(ν)
(x) − T̂(x)

∣∣ = oP(an), the fourth line uses [Cher-

nozhukov et al., 2014a, Theorem 2.1], and the last line uses Lemma SA-9 again. Similarly,

P

(
sup
x∈B

∣∣T̂(x)
∣∣ ≤ u

)

≥ P

(
sup
x∈B

∣∣T(ν)
(x)
∣∣ ≤ u− an

)
− P

(
sup
x∈B

∣∣T(ν)
(x)− T̂(x)

∣∣ ≥ an

)

≥ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u− an

)
−
√
Rn + o(1)

≥ P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u

)
− 4an

(
E

[
sup
x∈B

∣∣Z(ν)(x)
∣∣
]
+ 1
)
−
√
Rn + o(1)

≥ P

(
sup
x∈B

∣∣T(ν)
(x)
∣∣ ≤ u

)
− 4an

(
E

[
sup
x∈B

∣∣Z(ν)(x)
∣∣
]
+ 1
)
− 2
√
Rn + o(1).

From the proof of Lemma SA-9, E
[
supx∈B

∣∣Z(ν)(x)
∣∣] ≲ 1. Hence, the result follows.

Lemma SA-11 (KS Distance Between Z(ν) and Ẑ(ν)). Suppose the conditions for Theorem SA-5 hold.
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Then, for any multi-index |ν| ≤ p,

sup
u∈R

∣∣∣P
(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ u

)
− P

(
sup
x∈B

∣∣Ẑ(ν)(x)
∣∣ ≤ u

∣∣W
)∣∣∣ ≲P log(n)

(√ log n

nhd
+

logn

n
v

2+v hd
+ hp+1

)1/2
.

Proof of Lemma SA-11. First, using Lemma SA-4, we provide an upper bound between covariance func-

tions of the feasible Gaussian process and the infeasible Gaussian process. Letting Πx,y = Ωx,y/
√
Ωx,xΩy

and Π̂x,y = Ω̂x,y/
√
Ω̂x,xΩ̂y,

sup
x,y∈X

∣∣Πx,y − Π̂x,y

∣∣ = sup
x,y∈X

∣∣∣Ωx,y − Ω̂x,y√
Ωx,xΩy

+
Ω̂x,y√
Ω̂x,xΩ̂y

(
√

Ω̂x,xΩ̂y

Ωx,xΩy

− 1
)∣∣∣

From Lemma SA-4 and the fact that |√x−√
y| ≤ (x ∧ y)−1/2|x− y|/2 for x, y > 0,

sup
x,y∈X

∣∣(Ω̂x,xΩ̂y

)1/2 −
(
Ωx,xΩy

)1/2∣∣
(
Ωx,xΩy

)1/2 ≲
supx,y∈X

∣∣Ω̂x,xΩ̂y − Ωx,xΩy

∣∣

infx,y Ω̂x,xΩ̂y ∧ infx,y Ωx,xΩy

≲P h
p+1 +

√
log n

nhd
+

log n

n
v

2+v hd

and

sup
x,y∈X

∣∣Ωx,y − Ω̂x,y

∣∣
√
Ωx,xΩy

≲P h
p+1 +

√
log n

nhd
+

log n

n
v

2+v hd
.

Therefore, letting Rn =
√

logn
nhd + logn

n
v

2+v hd
, it follows that supx,y∈X |Πx,y − Π̂x,y| ≲P h

p+1 +Rn. Then, we

bound the KS distance between the maximum of Zn and Ẑ(ν) on a δn-net ofX, denoted byXδn : for all x ∈ B,

there exists z ∈ Xδn such that ∥x− z∥∞ ≤ δn. Since X is compact, we can assume M := Card (Xδn) ≲ δ−d
n .

Denote Zδn
n and Ẑδn

n to the process Zn and Ẑ(ν) restricted on Xδn , respectively. Then, by [Chernozhuokov

et al., 2022, Theorem 2.1],

sup
y∈RM

∣∣P(Zδn
n ≤ y)− P(Ẑδn

n ≤ y|W)
∣∣ ≲ log(M) sup

x,y∈X

∣∣Πx,y − Π̂x,y

∣∣ 12 ≲P log(M)(Rn + hp+1)
1
2 ,

and hence

sup
x∈R

∣∣P(∥Zδn
n ∥∞ ≤ x)− P(∥Ẑδn

n ∥∞ ≤ x|W)
∣∣ ≤ sup

x∈R

∣∣P(−x1 ≤ Zδn
n ≤ x1)− P(−x1 ≤ Ẑδn

n ≤ x1|W)
∣∣

≲P log(M)(Rn + hp+1)
1
2 =: RM .

Finally, we bound the KS distance on the whole X with the help of a sequence an > 0 to be determined.

Let

Ψδn(an) = P

(
sup

∥x−y∥∞≤δn

∣∣Z(ν)(x)− Z(ν)(y)
∣∣ ≥ an

)

and

Ψ̂δn(an) = P

(
sup

∥x−y∥∞≤δn

∣∣Ẑ(ν)(x)− Ẑ(ν)(y)
∣∣ ≥ an

∣∣∣W
)
.
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Then, for all t > 0,

P

(
sup
x∈B

∣∣Z(ν)(x)
∣∣ ≤ t

)

≤ P

(
sup

x∈Bδn

∣∣Z(ν)(x)
∣∣ ≤ t+ an

)
+Ψδn(an)

≤ P

(
sup

x∈Bδn

∣∣Ẑ(ν)(x)
∣∣ ≤ t+ an

∣∣∣W
)
+Ψδn(an) +RM

≤ P

(
sup
x∈B

∣∣Ẑ(ν)(x)
∣∣ ≤ t+ an

∣∣∣W
)
+Ψδn(an) + Ψ̂δn(an) +RM

≤ P

(
sup
x∈B

∣∣Ẑ(ν)(x)
∣∣ ≤ t

∣∣W
)
+ 4an

(
E

[
sup
x∈B

∣∣Ẑ(ν)(x)
∣∣
∣∣∣W
]
+ 1
)
+Ψδn(an) + Ψ̂δn(an) +RM .

Similarly, for all t > 0,

P

(
sup
x∈B

∣∣∣Z(ν)(x)
∣∣∣ ≤ t

)
≥ P

(
sup
x∈B

∣∣Ẑ(ν)(x)
∣∣ ≤ t

∣∣∣W
)
− 4an

(
E

[
sup
x∈B

∣∣∣Ẑ(ν)(x)
∣∣∣
∣∣∣W
]
+ 1
)

−Ψδn(an)− Ψ̂δn(an)−RM .

Since RM depends on δn through logM ≍ log(δ−d
n ), by choosing δn = n−s for large enough s, the term RM

will dominate the terms Ψδn(an) and Ψ̂δn(an). More precisely, for any δ,

sup
∥x−y∥∞≤δ

E

[(
Ẑ(ν)(x)− Ẑ(ν)(y)

)2∣∣∣W
]

= sup
∥x−y∥∞≤δ

(
Ω̂x,xΩ̂y

)− 1
2

( 1

nhd

)2 n∑

i=1

ε̂2i1(Xi ∈ A1)

·
(
eT1 Γ̂

−1

1,xrp

(Xi − x

h

)
K
(Xi − x

h

)
− eT1 Γ̂

−1

1,xrp

(Xi − y

h

)
K
(Xi − y

h

))2

+ sup
∥x−y∥∞≤δ

(
Ω̂x,xΩ̂y

)− 1
2

( 1

nhd

)2 n∑

i=1

ε̂i
2
1 (Xi ∈ A0)

·
(
eT1 Γ̂

−1

0,xrp

(Xi − x

h

)
K
(Xi − x

h

)
− eT1 Γ̂

−1

0,xrp

(Xi − y

h

)
K
(Xi − y

h

))2

≲P h
−d−2δ2,

where the last line uses Lemma SA-4, Lemma SA-2, and the almost sure bound on the Lipschitz constant

from the proof of Theorem SA-5, for some constant C > 0. Similarly, for any δ > 0,

sup
∥x−y∥∞≤δ

E

[(
Z(ν)(x)− Z(ν)(y)

)2]
= sup

∥x−y∥∞≤δ

E

[(
K (Xi,x)− K (Xi,y)

)2
ε2i

]
≤ C ′h−2δ2,

Then, by [van der Vaart and Wellner, 1996, Corollary 2.2.5],

E

[
sup

∥x−y∥∞≤δn

∣∣Ẑ(ν)(x)− Ẑ(ν)(y)
∣∣
∣∣∣W
]
≲P

∫ Ch−d/2−1δn

0

√
d log

(
1

εhd/2+1

)
dε ≲

√
log nh−d/2−1δn

and

E

[
sup

∥x−y∥∞≤δn

∣∣Z(ν)(x)− Z(ν)(y)
∣∣
]
≲

∫ Ch−1δn

0

√
d log

(
1

εh

)
dε ≲

√
log nh−1δn.
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In addition, using the fact that E
[
supx∈B

∣∣Ẑ(ν)(x)
∣∣∣∣W

]
≲ 1, and choosing an ≍ (

√
log nh−d/2−1δn)

1/2 and

δn ≍ n−s for some large constant s > 0, we conclude that

4an

(
E

[
sup
x∈B

∣∣Ẑ(ν)(x)
∣∣
∣∣∣W
]
+ 1
)
+Ψδn(an) + Ψ̂δn(an) +RM

≲P

(√
log nh−d/2−1δn

)1/2
+ d log(δ−1

n )(an + hp+1)1/2 ≲ d log(n)(an + hp+1)1/2,

and putting all the intermediate results together, the lemma follows.

The proof of Theorem SA-6 now follows directly from Lemma SA-9, Lemma SA-10 and Lemma SA-11.

Furthermore, by definition of Î
(ν)

α (x),

P

[
µ(ν)(x) ∈ Î

(ν)

α (x), for all x ∈ B
]
= P

[
sup
x∈B

∣∣T̂(ν)
(x)
∣∣ ≤ qα

]

= P

[
sup
x∈B

∣∣Ẑ(ν)(x)
∣∣ ≤ qα

]
+ o(1)

= E

[
P

[
sup
x∈B

∣∣Ẑ(ν)(x)
∣∣ ≤ qα

∣∣∣W
]]

+ o(1)

= 1− α+ o(1),

which completes the proof of the theorem.

SA-7.12 Proof of Lemma SA-6

Follows from Lemma SA-5 and the assumption that
∫
B
|w(x)|dHd−1(x) <∞.

SA-7.13 Proof of Lemma SA-7

Since V[τ̂WBATE|X] = V[
∫
B
µ̂0(b)w(b)dH

d−1(b)|X] + V[
∫
B
µ̂1(b)w(b)dH

d−1(b)|X], it is enough to consider

only one treatment assignment group t ∈ {0, 1}. In addition,

V

[ ∫

B

µ̂t(b)w(b)dH
d−1(b)

∣∣∣X
]
=

∫

B

∫

B

Cov
[
µ̂t(b1), µ̂t(b2)

∣∣X
]
w(b1)w(b2)dH

d−1(b1)dH
d−1(b2)

and

Ωt,WBATE =

∫

B

∫

B

Ωt,b1,b2w(b1)w(b2)dH
d−1(b1)dH

d−1(b2).

Proceeding as in the proof of Lemma SA-4, we have

sup
b1,b2∈B

∣∣Cov[µ̂t(b1), µ̂t(b2)|X]− Ωt,b1,b2

∣∣ ≲P

log(1/h)1/2

(nhd)3/2
.

Since K is supported on a compact set, let R ∈ (0,∞) denote the diameter of the support, and define

the “effective domain” E(h) = {(x,y) ∈ B ×B : ∥x− y∥ ≤ hR}. Since B is (d− 1) dimensional, we have
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νd(E(h)) ≲ hd−1, where νd is the product measure Hd−1 × Hd−1. Therefore,

∣∣∣V
[ ∫

B

µ̂t(b)w(b)dH
d−1(b)

∣∣∣X
]
− Ωt

∣∣∣

=
∣∣∣
∫

B

∫

B

(
Cov[µ̂t(b1), µ̂t(b2)|X]− Ωt,b1,b2

)
w(b1)w(b2)dH

d−1(b1)dH
d−1(b2)

∣∣∣

≲ sup
b1,b2∈B

∣∣Cov[µ̂t(b1), µ̂t(b2)|X]− Ωt,b1,b2

∣∣
∫

B

∫

B

1((b1,b2) ∈E(h))w(b1)w(b2)dH
d−1(b1)dH

d−1(b2)

≲P h
d−1 log(1/h)

1/2

(nhd)3/2
= oP((nh)

−1),

because log(1/h)
nhd = o(1). This proves the first claim. Next,

Ωt,WBATE =

∫

B

∫

B

Ωt,b1,b2w(b1)w(b2)dH
d−1(b1)dH

d−1(b2)

≤ sup
b1,b2∈B

∣∣Ωt,b1,b2

∣∣
∫

B

∫

B

1((b1,b2) ∈E(h))w(b1)w(b2)dH
d−1(b1)dH

d−1(b2)

≲ (nhd)−1νd(E(h)) ≲ (nh)−1,

which verifies the upper bound. For the lower bound, let b1 ∈ B and b2 = b1 + hδ for some vector δ such

that supx∈XKh(x−b1)Kh(x−b2) > 0. For multi-indexes u and v, and using change of variables, a typical

element of Σt,b1,b2 is

E

[(Xi − b1

h

)u(Xi − b1 − δh

h

)v 1

hd
K
(Xi − b1

h

)
K
(Xi − b1 − δh

h

)
σ2
t (Xi)1(Xi ∈ At)

]

=

∫

b1+hAt

su(s− δ)vK(s)K(s+ δ)σ2
t (b1 + hs)f(s)ds ≳ 1,

which implies that |Ωt,b1,b2 | ≳ (nhd)−1 for (b1,b2) on a set E′(h) such that νd(E
′(h)) ≳ hd−1. This verifies

lower bound in the second claim.

The third and final claim of the lemma follows from Lemma SA-4 and the same analysis as above.

SA-7.14 Proof of Theorem SA-7

Follows from Lemma SA-6 and Lemma SA-7.

SA-7.15 Proof of Theorem SA-8

Since τ̂WBATE− τWBATE = (µ̂1,WBATE−µ1,WBATE)− (µ̂0,WBATE−µ0,WBATE), it is enough to start with only one treatment

assignment group t ∈ {0, 1}. Furthermore,

µ̂t,WBATE − µt,WBATE =

∫

B

(µ̂1(b)− µ1(b))w(b)dH
d−1(b)

=

∫

B

e⊤1 Γ
−1
t,bQt,bw(b)dH

d−1(b) +

∫

B

e⊤1 (Γ̂
−1

t,b − Γ−1
t,b)Qt,bw(b)dH

d−1(b) +OP(h
p+1)

using Lemma SA-5 to bound the approximation error.
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For the second integral, let

Σt,x1,x2
= En

[
rp

(Xi − x1

h

)
rp

(Xi − x2

h

)⊤
hdKh(Xi − x1)Kh(Xi − x2)σ

2
t (Xi)1(Xi ∈ At)

]
,

and since Σt,b1,b2 = 0 if b1 and b2 are farther away form each other than the diameter of Supp(K),

E

[(∫

B

e⊤1 (Γ̂
−1

t,b − Γ−1
t,b)Qt,bw(b)dH

d−1(b)

)2∣∣∣∣X
]

=

∫

B

∫

B

e⊤1 (Γ̂
−1

t,b1
− Γ−1

t,b1
)(nhd)−1Σt,b1,b2

(Γ̂
−1

t,b2
− Γ−1

t,b2
)e1w(b1)w(b2)dH

d−1(b1)dH
d−1(b2),

≤ sup
b∈B

∥Γ̂−1

t,b − Γ−1
t,b∥2 sup

b1,b2∈B

∥Σt,b1,b2
∥ sup
b∈B

|w(b)|(nhd)−1m(E(h))

≲P (nh)−1,

and hence
∫
B
e⊤1 (Γ̂

−1

t,b − Γ−1
t,b)Qt,bw(b)dH

d−1(b) = oP((nh)
−1).

Next, using Lemma SA-7 and the previous results,

T̂WBATE − TWBATE =
(
Ω̂

−1/2
WBATE

− Ω
−1/2
WBATE

) ∫

B

e⊤1 Γ
−1
t,bQt,bdH

d−1(b) + oP(1) = oP(1),

where

TWBATE = Ω
−1/2
WBATE

∫

B

e⊤1 Γ
−1
t,bQt,bdH

d−1(b).

Finally, we apply the Berry-Esseen lemma to the statistic Tw =
∑n

i=1 Zi, where

Zi = n−1Ω
−1/2
WBATE

∫

B

e⊤1 Γ
−1
t,brp

(Xi − b

h

)
Kh(Xi − b)1(Xi ∈ At)uiw(b)dH

d−1(b),

which satisfies E[Zi] = 0. The definition of ΩWBATE implies that
∑n

i=1 V[Zi] = Ω
−1/2
WBATE

ΩWBATEΩ
−1/2
WBATE

= 1. Hence,

it remains to bound

n∑

i=1

E[|Zi|3] = n−3Ω
−3/2
WBATE

n∑

i=1

E

[∣∣∣∣
∫

B

e⊤1 Γ
−1
t,brp

(Xi − b

h

)
Kh(Xi − b)1(Xi ∈ At)uiw(b)dH

d−1(b)

∣∣∣∣
3]
.

Let R denote the diameter of the (compact) support of K, and define E(h) = {(b1,b2,b3) ∈ B3 :

∥bi − bj∥ ≤ R, j = 1, 2, 3}. Since B is d− 1 dimensional, m(E(h)) ≲ h2d−2. Then,

E

[∣∣∣∣
∫

B

e⊤1 Γ
−1
t,brp

(Xi − b

h

)
Kh(Xi − b)1(Xi ∈ At)uiw(b)dH

d−1(b)

∣∣∣∣
3]

≤ E

[ ∫

b1∈B

∫

b2∈B

∫

b3∈B

|G(b1,b2,b3)|w(b1)w(b2)w(b3)dH
d−1(b1)dH

d−1(b2)dH
d−1(b3)

]

≲ m(E(h)) sup
b1,b2,b3∈B

E[|G(b1,b2,b3)|],

where G(b1,b2,b3) = g(Xi, ui,b1)g(Xi, ui,b2)g(Xi, ui,b3) with

g(Xi, ui,b) = e⊤1 Γ
−1
t,brp

(Xi − b

h

)
Kh(Xi − b)1(Xi ∈ At)ui.
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Proceeding as in the proof of Lemma SA-2 and Lemma SA-7, it can be shown that

sup
b1,b2,b3∈B

E[|G(b1,b2,b3)|] ≲ h−2d

provided that log(1/n)
nhd = o(1). Therefore, together with the rate of ΩWBATE from Lemma SA-7, we have

∑n
i=1 E[|Z3

i |] ≲ (nh)−1/2, and the result follows.

SA-7.16 Proof of Theorem SA-9

Follows by Theorem SA-1 after noting that |τ̂LBATE − τLBATE| ≤ supx∈B |τ̂(x)− τ(x)|.

SA-7.17 Proof of Theorem SA-10

Consider the event E =
{
supb∈B

|τ̂(b)−τ(b)|
Ω̂

1/2
b,b

≤ qα

}
. Theorem SA-6 implies that P(E) = 1− α + o(1). On

the event E, we also have

τ̂(b)−qαΩ̂
1/2
b,b ≤ τ(b) ≤ τ̂(b) +qαΩ̂

1/2
b,b, ∀ b ∈ B,

which implies

sup
b∈B

τ̂(b)−qαΩ̂
1/2
b,b ≤ sup

b∈B

τ(b) ≤ sup
b∈B

τ̂(b) +qαΩ̂
1/2
b,b.

The stated result then follows.

SA-7.18 Proof of Theorem SA-11

We will use a truncation argument. Let κn > 0 be the level of truncation. For each r ∈ R, define

r̃(y) = r(y)1(|y| ≤ κn), y ∈ R,

and define the class R̃ = {r̃ : r ∈ R}. For an overview of our argument, suppose ZR
n is some mean-zero

Gaussian process indexed by G×R∪G× R̃, whose existence will be shown below, then we can decompose

by:

Rn(g, r)− ZR
n (g, r) =

[
Rn(g, r̃)− ZR

n (g, r̃)
]
+
[
Rn(g, r)−Rn(g, r̃)

]
+
[
ZR
n (g, r)− ZR

n (g, r̃)
]
.

Part 1: Strong approximation for truncated residual empirical process.

Observe that MR̃,Y ≲ κn and pTVR̃,Y ≲ κn, and R̃ is a VC-type class with envelopeMR̃,Y =MR,Y1(|·| ≤ κn)

over Y with constants cR,Y and dR,Y. Then, Cattaneo and Yu [2025, Theorem 2] with v = κn and α = 0

for the class of functions G and R̃ implies on a possibly enlarged probability space, there exists a sequence

of mean-zero Gaussian processes (ZR
n (g, r) : (g, r) ∈ G × R̃) with almost sure continuous trajectories on
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(G× R̃, ρP) such that E[Rn(g1, r1)Rn(g2, r2)] = E[ZR
n (g1, r1)Z

R
n (g2, r2)] for all (g1, r1), (g2, r2) ∈ G× R̃, and

E[∥Rn(g, r̃)− ZR
n (g, r̃)∥G×R]

≤ C1vκn

(√
dmin

{ (cd1Md+1
G TVdEG)

1
2d+2

n1/(2d+2)
,
(c

d
2
1 c

d
2
2 MGTV

d
2 EGL

d
2 )

1
d+2

n1/(d+2)

}
((d+ k) log(cn))3/2 +

(d+ k) log(cn)√
n

MG

)

= C1vκn

(√
drn((d+ k) log(cn))

3
2 +

(d+ k) log(cn)√
n

MG

)
,

where C1 is some positive universal constant. Notice that we use TV = max{TVG, TVG×UR,QG
} as an upper

bound for max{TVG, TVG×VR̃,QG
}, and similarly L as an upper bound for max{LG, LG×VR̃,QG

}.
In the special case that R = {r∗} is a singleton, take ỹi = r∗(yi)1(|yi| ≤ κn)/(vκn), then we have

E[exp(|ỹi|)] ≤ 2. Also ỹi is supported on Ỹ = [−1, 1]. Moreover,

1

vκn
Rn(g, r̃∗) =

1

n

n∑

i=1

g(xi)(ỹi − E[ỹi]), g ∈ G.

In particular, the right hand side can be viewed as a residual empirical process based on sample (xi, ỹi), 1 ≤
i ≤ n, indexed by G × {Id}, where Id : R → R is the identity function. Then we can apply Cattaneo and

Yu [2025, Theorem 2] with v = 1 and α = 0 on the latter empirical process to get the upper bound with TV

and L replaced by TVsing and Lsing.

Part 2: Truncation error for the empirical process — ∥Rn(g, r)−Rn(g, r̃)∥G×R

Consider the class of differences due to truncation, that is, ∆R = {r − r̃ : r ∈ R}. Our assumptions imply

G ×∆R is VC-type in the sense that for all 0 < ε < 1,

sup
Q

N(G ×∆R, ∥·∥Q,2 , ε∥MG(MR,Y −MR̃,Y)∥Q,2) ≤ cGcR,Y(ε2/4)−dG−dR,Y ,

where sup is over all finite discrete measure on Rd+1, and MR̃,Y(y) = MR,Y(y)1(|y| ≤ κn). We can check

that MG(MR,Y −MR̃,Y) is an envelope function for G×∆R, since all functions in ∆R are evaluated to zero

on [−κn, κn]. Denote X = (xi)1≤i≤n,

E

[
max
1≤i≤n

M2G(MR,Y(yi)−MR̃,Y(yi))
2
∣∣∣X
] 1

2

≲ MGE

[(
max
1≤i≤n

MR,Y(yi)
)2∣∣∣X

] 1
2

≲ MGn
1

2+v ,

sup
(g,r)∈G×R

E[g(xi)
2r(yi)

2
1(|yi| ≥ κ1/αn )]

1
2 ≲ sup

(g,r)∈G×R

E

[
g(xi)

2E[r(yi)
2+v|xi]

2
2+v P(|yi| ≥ κn|xi)

v
2+v

]

≲
√
MGEGκn.

By Jensen’s inequality, we also have

E

[
max
1≤i≤n

M2G(E[MR,Y(yi)−MR̃,Y(yi)|xi])
2
∣∣∣X
] 1

2

≲ MGn
1

2+v ,

sup
(g,r)∈G×R

E[g(xi)
2E[r(yi)− r̃(yi)|xi]

2]
1
2 ≲

√
MGEGκ

−v
n ,

E[M2G(MR,Y(yi)−MR̃,Y(yi))
2]1/2 ≲ MGκ

−v/2
n .
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Denote A = (cGcR)
1

2dG+2dR /4 and D = 2dG + 2dR, Chernozhukov et al. [2014b, Corollary 5.1] gives

E [∥Rn(g, r)−Rn(gr̃)∥G×R] ≲ E

[
sup
g∈G

sup
h∈∆R

1√
n

n∑

i=1

g(xi)(h(yi)− E[h(yi)|xi])

]

≲

√
DMGEGκ

−v
n log(A

√
MG/EG) +

DMGn
1

2+V

√
n

log(A
√
MG/EG)

≲

√
D log(A

√
MG/EG)

√
MGEGκ

−v/2
n +

D log(A
√
MG/EG)MG√

n
v

2+v

.

Part 3: Truncation error for the Gaussian process — ∥ZR
n (g, r)− ZR

n (g, r̃)∥G×R

Our assumptions imply G× R̃∪G×R is VC-type w.r.p envelope function 2MGMR,Y in the sense that for all

0 < ε < 1,

sup
Q
N(G ×R ∪G × R̃, ∥·∥Q,2 , 2ε∥MGMR,Y∥Q,2) ≤ cGcR(ε

2/4)−dG−dR ,

where sup is over all finite discrete measure on Rd+1. Hence G × R̃ ∪G ×R is pre-Gaussian, and on some

probability space, there exists a mean-zero Gaussian process Z̄R
n indexed by F = G × R̃ ∪G ×R with the

same covariance structure as Rn, and has almost sure continuous path w.r.p the metric ρ, given by

ρ((g1, r1), (g2, r2)) = E[(ZR
n (g1, r1)− ZR

n (g2, r2))
2]

1
2 = E[(Rn(g1, r1)−Rn(g2, r2))

2]
1
2 , (g1, r1), (g2, r2) ∈ F.

Recall the definition of G ×∆R in Part 2. Then, we have shown previously that

σ ≡ sup
f∈G×∆R

ρ(f, f) ≤
√
MGEGκ

−v
n ,

Our assumptions imply for all 0 < ε < 1,

N(G ×R ∪G × R̃, ρ, ρ(2εMGMR,Y, 2ε∥MGMR,Y)1/2) ≤ cGcR(ε
2/4)−dG−dR

Denote A = (cGcR)
1

2dG+2dR /4 and D = 2dG + 2dR. Then, by van der Vaart and Wellner [1996, Corollary

2.2.8], choose any (g0, r0) ∈ G ×R, we have

E

[
∥Z̄R

n (g, r)− Z̄R
n (g, r̃)∥G×R

]
≲ E

[∣∣Z̄R
n (g0, r0)− Z̄R

n (g0, r̃0)
∣∣]+

∫ σ

0

√
log
(
cGcR

(MG
ε

)dG+dR

)
dε

≤
√
D log(A

√
MG/EG)

√
MGEGκ

−v/2
n

≲
√
(dG + dR,Y) log(cGcR,Ykn)

√
MGEGκ

−v/2
n .

Since (Z̄R
n (g, r) : g ∈ G, r ∈ R) has the same distribution as (ZR

n (g, r) : g ∈ G, r ∈ R), we know from

Vorob’ev–Berkes–Philipp theorem [Dudley, 2014, Theorem 1.31] that Z̄R
n can be constructed on the same

probability space as (xi, yi)1≤i≤n and ZR
n , such that Z̄R

n and ZR
n coincide on G×R. By an abuse of notation,

call Z̄R
n now ZR

n , the outputted Gaussian process.

38



Part 4: Putting Together

If follows from the definition of R̃ and the previous three parts that if we choose κn such that

rnκn ≍
√
MGEGκ

−v/2
n ,

then the approximation error can be bounded by

E
[
∥Rn − ZR

n ∥G×R

]
≲ (d log(cn))3/2r

v
v+2
n (

√
MGEG)

2
v+2 + d log(cn)MGn

− v/2
2+v

+ d log(cn)MGn
−1/2

(√
MGEG

rn

) 2
v+2

,

where d = dG + dR,Y + k, and c = cGcR,Yk.
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