arXiv:2505.05670v2 [econ.EM] 29 Oct 2025

Estimation and Inference in Boundary Discontinuity

Designs: Location-Based Methods*

Matias D. Cattaneo! Rocio Titiunik* Ruiqi (Rae) Yu®

October 31, 2025

Abstract

Boundary discontinuity designs are used to learn about causal treatment effects
along a continuous assignment boundary that splits units into control and treatment
groups according to a bivariate location score. We analyze the statistical properties of
local polynomial treatment effect estimators employing location information for each
unit. We develop pointwise and uniform estimation and inference methods for both
the conditional treatment effect function at the assignment boundary as well as for
transformations thereof, which aggregate information along the boundary. We illus-
trate our methods with an empirical application. Companion general-purpose software

is provided.
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1 Introduction

We study estimation and inference in boundary discontinuity (BD) designs, where the goal
is to learn about causal treatment effects along a continuous assignment boundary that
splits units into control and treatment groups according to a bivariate location score. This
setup is also known as a Multi-Score Regression Discontinuity (RD) design [Papay et al.,
2011, Reardon and Robinson, 2012, Wong et al., 2013], a leading particular case being the
Geographic RD design [Keele and Titiunik, 2015, Keele et al., 2015, Keele and Titiunik,
2016, Keele et al., 2017, Galiani et al., 2017, Rischard et al., 2021, Diaz and Zubizarreta,
2023]. As in the univariate RD design, under appropriate assumptions, the abrupt jump in
treatment assignment along the boundary can be used to identify causal treatment effects,
even if the treatment is specifically targeted to those units who need it the most. This makes
BD designs a central tool in non-experimental policy evaluation. See Cattaneo and Titiunik
[2022] for an overview of the RD design literature, Cattaneo et al. [2024c, Section 5] for a
practical introduction to Multi-Dimensional RD designs, and Cattaneo et al. [2026] for a
review of empirical practice employing BD designs.

BD designs are commonly used in the quantitative social, behavioral, and biomedical sci-
ences when the interventions of interest are assigned based on bivariate scores. For example,
Londono-Vélez, Rodriguez, and Sanchez [2020] study the effects of Ser Pilo Paga (SPP), a
government subsidy in Colombia that provided tuition support for post-secondary students
to attend a government-certified higher education institution. Eligibility was based on both
merit and economic need: in order to qualify for the program, students had to obtain a high
grade in Colombia’s national standardized high school exit exam, SABER 11, and they also
had to come from economically disadvantaged families, as measured by the survey-based
wealth index SISBEN. The eligibility rule was deterministic with a fixed bivariate cutoff: to
qualify for the program, students had to obtain a SABER 11 score in the top 9 percent of
scores, and their household’s SISBEN index had to be below a region-specific threshold.

We study estimation and inference of causal treatment effect parameters in BD designs



where the location of each unit given by the two dimensions of the bivariate score is explicitly
incorporated in (local) regression analyses—we refer to it as the location-based approach, to
distinguish it from analyses where bivariate scores are not directly used but rather trans-
formed according to some distance measure [Cattaneo et al., 2025b,a]. Although practitioners
across the quantitative sciences employ the BD design to study treatment effects by adapting
local polynomial methods developed for the univariate RD design, there is no foundational
understanding of the statistical properties of these methods in the bivariate case, particularly
when interest lies on uniformity or information aggregation over all boundary points. Our
paper establishes the properties of local polynomial methods for BD estimation and inference
using bivariate scores both pointwise and uniformly, and offers practical recommendations
for the analysis and interpretation of BD designs in applications. Although our pointwise
results are straightforward generalizations of prior results, our uniform methods are novel
and offer researchers the ability to conduct valid inferences for the entire collection of average
treatment effects at each boundary point, as well as for transformations thereof.

Our causal inference setup follows standard potential outcomes notation [see, e.g., Hernén
and Robins, 2020]. The triplet (Y;(0),Y;(1),X,)", i = 1,2,...,n, is a random sample,
where Y;(0) and Y;(1) denote the potential outcomes for unit ¢ under control and treatment
assignment, respectively, and the score X; = (Xj;, Xo;)" is a continuous bivariate vector
with support & C R2?. Units are assigned to either the control group or the treatment
group according to their location X; relative to a known one-dimensional boundary curve
A splitting the support X in two disjoint regions: X = oy U o, with oy and &/ the
control and treatment disjoint (connected) regions, respectively, and % = bd (%) N bd (1),
where bd(&/;) denotes the boundary of the set o/;. The observed outcome is Y; = 1(X; €
o) - Y;(0) + 1(X; € o) - Yi(1). Without loss of generality, we assume that the boundary
belongs to the treatment group, that is, bd(&/;) C /1 and B N Ay = 0.

In the SPP application, each student was assigned a bivariate score X; = (SABER11;, SISBEN,) ',
where X;; = SABER11,; recorded the SABER11 score and X5; = SISBEN; recorded the SISBEN

wealth score. After recentering each variable at its corresponding threshold, the treatment
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Figure 1: Scatterplot, Assignment Boundary, and Treatment Effects Using SPP data.

Note: Panel (a) presents a scatterplot of the bivariate score X; using the SPP data, and also plots the
treatment boundary 9 with 40 marked grid points. Panel (b) presents causal treatment effect estimates
over the 40 boundary grid points depicted in Panel (a). Specifically, the black solid dots correspond to 7(b,)
(BATEC), the blue dotted line corresponds to Typsre (WBATE), and the red dot-dash line corresponds to
Tipate (LBATE). The companion R software package rd2d is used for implementation; further details are
available in the replication files and in Cattaneo et al. [2025¢].

assignment boundary becomes % = {(SABER11, SISBEN) : (SABER11, SISBEN) € {SABER11 >
0 and SISBEN = 0} U {SABER11 = 0 and SISBEN > 0}}. Figure la presents a scatterplot of
the bivariate score of the data of students in the 2014 cohort (n = 363,096 observations),
and also plots the bivariate assignment boundary 9% together with 40 evenly-spaced cutoff
points along the boundary, denoted by by, ..., byg.

We begin by considering the functional causal parameter

r(x) = ENi(1) - ()X, =x, x¢c B,

which we call the boundary average treatment effect curve (BATEC) because it captures
the average treatment effects at each point on the boundary. Our first goal is to conduct
estimation and inference for 7(x), both pointwise for each x € & and uniformly over the
entire boundary 3. In the SPP application, the outcome is Y; = 1 if student ¢ attended

college or Y; = 0 otherwise, and thus the causal parameter 7(x) captures the effect of SPP



on the probability of college education for students at the margin of program eligibility, as
determined by their bivariate score X; = (SABER11;, SISBEN;)" € %. The parameter 7(x)
captures policy-relevant heterogeneous treatment effects along the boundary %: for exam-
ple, in Figure la, 7(b;) is the average treatment effect at the boundary point x = by where
students have high SISBEN score (wealth) and low SABER11 score (academic), while 7(byg)
is the average treatment effect at the boundary point x = by, where students have low SIS-
BEN score and high SABER11 score. Identification of these boundary treatment effects is
analogous to identification in standard continuity-based univariate RD design [Hahn et al.,
2001]: treatment assignment changes abruptly along the boundary %, which implies that
conditional expectations on each side of this boundary can be used to identify 7(x) when-
ever there is no systematic “sorting” of units into treatment and control, that is, whenever
E[Y;(0)|X; = x] and E[Y;(1)|X; = x| are continuous for all x € & (Assumption 1 below). For
more discussion, see Papay et al. [2011], Reardon and Robinson [2012], Wong et al. [2013],
Keele and Titiunik [2015], and references therein.

The boundary average treatment effect curve, 7(x) for x € 3B, captures the heterogene-
ity of causal treatment effects along the boundary. In applications, researchers may also
wish to summarize this heterogeneity in a single causal parameter. This can be achieved
by considering functional transformations of 7(x). We consider two leading examples of
aggregated causal effects along the boundary: the weighted boundary average treatment ef-
fect (WBATE), and the largest boundary average treatment effect (LBATE). The WBATE

parameter is

J T)w(x)d$H(x)
Jgwx)dH(x)

TWBATE —

where $) denotes the one-dimensional Hausdorff measure, and the integrals are defined via
Carathéodory’s Theorem following classical measure theory results [Simon et al., 1984, Fed-
erer, 2014]. If the boundary is “nice” enough, the integrals in the definition of Tygyrg may

sometimes be represented as simple line integrals. Intuitively, rypare “averages” all the (po-



tentially heterogeneous) treatment effects 7(x) at each boundary point. See Reardon and

Robinson [2012] and Wong et al. [2013] for more discussion. The LBATE parameter is

TLBATE = SUp T(X)v
xX€ERB

another aggregate causal parameter that captures the “best” causal treatment effect along
the assignment boundary. See, e.g., Andrews et al. [2024] for a discussion on this type of
extreme treatment effects for policy decisions. In the SPP application, mypare and 7ipare cap-
ture the average and largest causal effect of receiving the college subsidy across all students
near the boundary of eligibility, respectively.

Motivated by the local-to-boundary identifiability of 7(x), it is natural to employ flexible
regression methods using only observations whose scores are near each boundary point.
Local polynomial methods are the preferred choice for estimation and inference because they
rely on simple (weighted) linear regression estimates that intuitively incorporate localization
to x € %, while also retaining most of the familiar features of least squares regression.
We study the statistical properties of these location-based treatment effect estimators, and
present pointwise and uniform estimation and inference methods for 7(x) as well for Typyre
and Tipare-

As a first illustration, Figure 1b presents the estimated average treatment effects at 40 dif-
ferent boundary points depicted in Figure la, denoted by 7(b;), j = 1,...,40, as well point
estimates of WBATE and LBATE, denoted by Tygare and Tigare, respectively. This initial
results motivate the importance of conducting estimation and inference for the boundary
average treatment effect curve to capture heterogeneity: for students who are marginal in
terms of merit, the program appears to have a roughly constant effect along wealth levels, but
for students who are marginal on wealth, the program appears to have a decreasing effect as
academic performance improves. This finding suggests that students from under-privileged
backgrounds may benefit more from SPP than wealthier and high-achieving students. We

offer formal estimation and inference methods to support this initial finding, and for aggre-



gation of heterogeneous treatment effects along the boundary.

1.1 Organization and Related Literature

Section 2 introduces the formal causal inference framework and the location-based estimation
approach (Assumption 1 below), which generalizes the classical RD design setup to bivariate
scores and treatment assignment rules. For a review of the RD literature see Cattaneo and
Titiunik [2022], and for a practical introduction see Cattaneo et al. [2020, 2024¢]. We provide
foundational theory and methods for BD designs discussed in Cattaneo et al. [2024¢, Chapter
5]; see also Jardim et al. [2024]. Seminal empirical examples in the social sciences include
Card and Krueger [1994], Black [1999] and Dell [2010]; see Cattaneo et al. [2026] for many
more empirical examples.

Section 3 presents pointwise (for each x € %), integrated mean square (over %), and
uniform (over %) estimation and inference methods for the location-based local polynomial
treatment effect estimator. Our pointwise results are generalizations of well-known results in
nonparametric literature [e.g., Hardle et al., 2004, and references therein]: the main innova-
tion underlying those results is to present a new regularity conditions on the bivariate kernel
function and boundary % (Assumption 2 below). We discuss the pointwise results as a build-
ing block for our integrated mean square and uniform results, which require new theoretical
development and thus provide a novel contribution to the literature. The main technical
issue is that our mean square and uniform results are established over the one-dimensional
manifold 9, and thus its shape can affect the statistical validity of those estimation and
inference methods. We also discuss new bandwidth selection methods based on mean square
error (MSE) expansions, robust bias-corrected inference, and related implementation details.
Our results provide natural generalizations of well-established results for univariate RD de-
signs; see Calonico et al. [2020] for bandwidth selection, and Calonico et al. [2014, 2018,
2022] for robust bias correction. See also Papay et al. [2011] for an early methodological
discussion.

Section 4 studies the aggregated causal parameter 7ygyrg, which corresponds to an integral



over a one-dimensional manifold of a two-dimensional (difference of) conditional expectation
functions. This type of object has only been studied in the literature very recently: in
concurrent work, Chen and Gao [2025] developed estimation and inference methods for
integral functionals on submanifolds using series/sieve estimation. Our theoretical results
also concern integral functionals on submanifolds, but when using local polynomial regression
as the underlying nonparametric ingredient. Therefore, our estimation and inference results
for Typare are new to the literature. See Reardon and Robinson [2012] and Wong et al. [2013]
for early methodological discussion. Our large-sample nonparametric results complement
the design-based methods developed in Keele et al. [2015] and Diaz and Zubizarreta [2023],
and the Bayesian methods developed in Rischard et al. [2021] for BD designs.

Section 5 studies the aggregated causal parameter 7igyre, and presents estimation and
inference methods based on the location-based local polynomial treatment effect estimator.
These results offer new treatment effect estimation and causal inference in the context of
BD designs, previously unavailable in the literature.

Section 6 deploys our theoretical and methodological results to the SPP data, revising
the main results reported in Londono-Vélez, Rodriguez, and Sénchez [2020]. In addition
to providing further empirical evidence in favor of their empirical findings, we also find
some evidence of treatment effect heterogeneity along the assignment boundary 3. All
empirical results are obtained using the companion R package rd2d, and we provide complete
replication files.

Section 7 discusses two extensions of our work. First, we consider imperfect compliance
(fuzzy) BD designs. Second, we consider the role of pre-intervention covariates for efficiency
improvements and heterogeneity analysis. We outline how our theoretical work can be di-
rectly deployed, or easily extended, to develop new point estimation and inference procedures
for each generalization.

Section 8 concludes. The supplemental appendix presents more general theoretical results,
reports all technical proofs, and gives other results that may be of independent interest. In

particular, Section SA-6 presents a new strong approximation theorem for empirical pro-



cess with polynomial bounded moments, which generalizes recent work in Cattaneo and Yu
[2025]. Finally, our companion software article [Cattaneo et al., 2025¢] discusses the general-
purpose R software package rd2d (https://rdpackages.github.io/rd2d) implementing

the methods developed in this paper.

1.2 Notation

We employ standard concepts and notations from empirical process theory [van der Vaart
and Wellner, 1996, Giné and Nickl, 2016] and geometric measure theory [Simon et al., 1984,
Federer, 2014]. For a random variable V;, we write E,[g(V;)] = n~tY " g(V;). For
a Borel set & C ', the De Giorgi perimeter of & is perim(&) = sup,cg, ) Jge L(X €
§) div g(x)dx/||g|lee, where div is the divergence operator, and Z»(Z’) denotes the space of
O functions with values in R? and with compact support included in &. When & is con-
nected, and the boundary bd(&) is a smooth simple closed curve, perim(§) simplifies to the
curve length of bd(&§). A curve & C R? is a rectifiable curve if there exists a Lipschitz contin-
uous function v : [0, 1] — R? such that % = ([0, 1]). $ denotes the one-dimensional Haus-
dorff (outer) measure, and integration against ) is defined using classical (geometric) measure
theory. For a function f : R? — R, Supp(f) denotes closure of the set {x € R*: f(x) # 0}.
|an|

For reals sequences a,, = o(b,) if limsup,, . v = 0, a, < b, if there exists some constant

|br| ~
C and N > 0 such that n > N implies |a,| < Clb,|. For sequences of random variables

a, = op(by) if plimn_)oo% = 0, |an| Sp [bn| if limsupy,_,. limsup,, . P|3=| > M] = 0.

Finally, ®(z) denotes the standard Gaussian cumulative distribution function.

2 Setup

We impose the following basic conditions on the underlying data generating process.
Assumption 1 (Data Generating Process). Let t € {0,1}, p > 1, and v > 2.

1) Vi), X)), ..., (Ya(t), X)) are independent and identically distributed random vec-

tors.


https://rdpackages.github.io/rd2d

(ii) The distribution of X; has a Lebesgue density fx(x) that is continuous and bounded
away from zero on its support L = [L,U)?, for —oo <L < U < oc.
(i) we(x) = E[Y;(t)|X; = x] is (p + 1)-times continuously differentiable on X .
2

(iv) o7 (x) = V[Y;(t)|X; = x] is bounded away from zero and continuous on I .

(v) supyeg B[|Yi(£)[*7X; = x] < o0.

These conditions are analogous to the usual conditions imposed in the classical RD de-
sign with univariate score. Part (ii) goes beyond the usual compact support restriction
and further assumes a tensor product structure on 2 to avoid technical difficulties in our
strong approximations for uniform distribution theory; this condition is not practically re-
strictive because all methods considered in this paper localize to the boundary, which is in
the interior of 2. Part (iii) imposes standard smoothness conditions on the bivariate condi-
tional expectation functions of interest, which will play an important role in misspecification
(smoothing) bias reduction in our upcoming results. Nonparametric identification of 7(x)
follows directly from Assumption 1: see Papay et al. [2011], Reardon and Robinson [2012],
Keele and Titiunik [2015], and references therein.

The location-based estimator of the boundary average treatment effect curve 7(x) is

F(x)=e]Bi(x) — e/ By(x), x€B,
where, for ¢t € {0,1},
Bi(x) = arg min B (¥ =0, (X = %) 8)" K (X — )X, € o) (1)
with p, = (24p)(1+p)/2—1, rp(w) = (1, ug, ug, w2, ugug, ul, -+ uf, uf tug, -+ ugub ' ub) T

the pth order polynomial expansion of the bivariate vector u = (uj,up)", and Kp(u) =
K (uy/h,us/h)/h? for a bivariate kernel function K (-) and bandwidth parameter h. We em-
ploy the same bandwidth for each dimension of X; only for simplicity, and because it is

common practice to first standardize each dimension of the bivariate score before imple-



menting the estimator 7(x).
We impose the following assumption on the bivariate kernel function and assignment

boundary.
Assumption 2 (Kernel and Boundary). Let t € {0,1}.

(i) & is a rectifiable curve.
(i) K : R? — [0,00) is compact-supported and Lipschitz continuous, or K(u) = 1(u €
—1,12).
(ili) There exists U C R?, such that K(u) > & > 0 for allu € U, Ayin([;; 1p(2)1,(2) " dz) >

0, and the integration satisfies liminfy, o infxc g fU K(u)l(x+ hu € o;)du 2 1.

Assumption 2(i) imposes minimal regularity on the one-dimensional assignment boundary
A, which is useful to compute integrals over that one-dimensional manifold, and to establish
uniform and aggregated results. Assumption 2(ii) is standard in the literature. Assump-
tion 2(iii) is new to the literature, and crucial for the asymptotic analysis. It restricts the
geometry of % as well as it interacts with the kernel K; the density of the data fx(x) is
not explicitly present because, by Assumption 1(ii), it is bounded away from zero. Heuris-
tically, this assumption ensures that the kernel “splits” the (roughly locally uniform) mass
between treatment and control regions “evenly” given the local shape of 9. In the sup-
plemental appendix (Lemma SA-1), we carefully show that Assumptions 1(ii) and 2 imply

that the population Gram matrix I';x = ]E[rA%)rp(x"h_x)TKh(Xi - x)1(X; € .th)] pe

fdt rp(¥)rp(xi,:x)TKh(Xi — x) is full rank for h small enough, uniformly in x € 9. This
result is novel to the literature, and guarantees that the treatment effect estimator 7(x) will
be well-defined in large samples, under the conditions imposed in this paper. Assumption
2(iii) is stated uniformly over % in anticipation of our uniform estimation and inference
results, but it can be relaxed to hold only pointwise in x € 9% for our pointwise results; see
the supplemental appendix for details.

Finally, to ensure that the aggregated weighted boundary average treatment effect Tygare

is well-defined, we impose the following conditions on the weight function.

10



Assumption 3 (Weight Function and Boundary). Let w : & — R with sup,cg |w(x)| < oo,
infyeg |w(x)| >0, and [, |w(x)|dH(x) < oo

In particular, w(x) = fx(x) satisfies Assumptions 3. In this case, the WBATE reduces to

the boundary average treatment effect (BATE):

fx (x)
f@fX ( )

— /% XXX € B)Hx),  FxIXi € B) =

This causal parameter corresponds to the density-weighted average causal effect along the
assignment boundary, and is discussed by Wong et al. [2013]. See Cattaneo et al. [2025b] for

an alternative regression-based approach commonly used in practice to estimate the BATE.

3 Boundary Average Treatment Effect Curve

Given Assumption 1, pointwise and uniform point estimation results for (7(x) : x € %) follow
from standard local polynomial calculations and empirical process theory; the only technical
issue is related to the geometry of the boundary &%, which is handled via Assumption 2.
On the other hand, our integrated mean square expansion and uniform distribution results

require new theoretical developments. All details are in the supplemental appendix.

3.1 Treatment Effect Estimation

Using standard concentration techniques from empirical process theory, we obtain the point-

wise and uniform convergence rate of 7(x).

Theorem 1 (Convergence Rates). Suppose Assumptions 1 and 2 hold. If nh?/log(1/h) —

oo and h — 0, then

(i) [7(x) = 7(x)| <p m+ 1+v +hp+1 forx € &, and

(i) supyeg [T(x) = 7(X)[ Sp 1/ logn(,lléh) + 18O/ y pptt

n2+v b2

This theorem immediately establishes consistency of the treatment effect estimator based

on the bivariate location score. Notably, the theorem shows that the bias is of order hP*!
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regardless of whether there are kinks or other irregularities in &. See Cattaneo et al. [2025a]
for more discussion.

Given its standard structure, it is easy to establish a pointwise (conditional on X) MSE
expansion for the estimator 7(x) for each x € %. Furthermore, employing tools from geo-
metric measure theory, it is also possible to establish an integrated (conditional on X) MSE
expansion along the boundary. Using standard multi-index notation, the leading (pointwise)

conditional bias is Bx = B x — By x with

(k)
Bix = ele‘;i Z ad kgx)E[rp<Xih_ X> <th_ X>kKh(Xi - x)1(X; € o)
[k|=p+1 '

and f‘t,x =E, [rp(xi};")rp(xi,;x)TKh(Xi - x)1(X; € th)], for t € {0,1}. Similarly, the
leading (pointwise) conditional variance is Vi = Vix + Vox with Vi = eff; iEux,xf; iel

and

S = h2E [rp(Xih_ X)r,,(X"h_ X)TKh(Xi — x)202(X,)L(X; € .th)],

for t € {0,1}. The following theorem gives the MSE expansions. Let X = (X ,...,X]).

Theorem 2 (MSE Expansions). Suppose Assumptions 1, 2, and 3 hold. If nh?/log(1/h) —

oo and h — 0, then

(i) E[(F(x) — 7(x))}X] = p2PFV B2 4 —> Vi + 0p(R,), and
(it) [ E[(F(x) = 7(x))*|X]w(x)dH(x) = BV [ Biw(x)dH(x) + 1z [o Vaw(x)d$(x) +
OP(%H)y

_2(1+v)

with R, = kP2 +nth=2 4+ n 200 b4

Ignoring the higher-order terms, the approximate MSE-optimal and IMSE-optimal band-

width choices are

2V 1 ) 1/(2p+4)

5 B ( 1 2 [, Viw(x)dH(x) 1 > 1/(2p+4)
e \(2p+2)B2n

and  hiwsg = ((2p+ 2) [, Bﬁw(x)dﬁ(X)ﬁ

9

12



provided that By # 0 and [, Biw(x)d$)(x) # 0, respectively. These choices are infeasible
because a preliminary bandwidth, as well as estimates of the the conditional variances and
higher-order derivatives of the conditional mean, are needed. We discuss implementation in
Section 3.3, and in our companion software article [Cattaneo et al., 2025¢|. It follows from
Theorems 1 and 2 that, for an appropriate choice of tuning parameters, the estimator 7(x)
can achieve the usual nonparametric optimal convergence rates [see, e.g., Tsybakov, 2008, for
a textbook review|. Therefore, MSE-optimal and IMSE-optimal location-based treatment
effect estimators of 7(x) can be constructed using husgx and husg, respectively.

Most of the results in this section are standard in the literature. The one exception is
the integrated MSE expansion in Theorem 2, which requires additional care to handle the
integral over the one-dimensional manifold 9. We present these point estimation results
because they will play an important role in our upcoming uniform (over &%) and aggregation

(along ) analyses of the boundary average treatment effect curve.

3.2 Uncertainty Quantification

Given a bandwidth choice, the feasible t-statistic is

where, using standard least squares algebra, the variance estimator is

~—1

~ ~ ~ ~ 1 ~—1 ~
_ _ T
QXI:X2 - QU,Xl,Xz + QLX17X27 Qt,x17x2 - nh2 € Ft,xl EtyxlaXQFt,XQel

with

P XZ — X Xz — X T e e
Et,xhxg = h,Q]En [rp(Tl)rp<T2> Kh(Xz — Xl)Kh(Xl — XQ)Ei(Xl)gi(Xg)]].(Xi - Q{t)

and £(x) = V; = 1(X; € )R, (X; — %) By(x) — U(X; € )Ry(X; — x)7 B, (x), for all
x1,Xy € B and t € {0,1}.

13



Wald-type feasible confidence intervals and confidence bands over & take the form:

T (x) = [?(x) — Za\/ Dyex » ?(x)+%\/ﬁx,x], x € B,

for any a € (0,1), and where ¢, denotes the appropriate quantile depending on the de-
sired inference procedure. For pointwise inference, it is a textbook exercise to show that
SUDser IP[T(x) < t] — ®(t)| — 0 for each x € %, under standard regularity conditions, and
provided that the “small bias” condition nh?*** — 0 holds. This result can then be used to
construct the usual confidence intervals for 7(x).

For uniform inference (over ), two challenges arise: (i) the stochastic process (T(x) :
x € ) is not asymptotically tight, and thus it does not converge weakly in the space of
uniformly bounded real functions supported on & and equipped with the uniform norm [van
der Vaart and Wellner, 1996, Giné and Nickl, 2016]; and (ii) the geometry of the manifold
% can affect the validity of the distributional approximation (this is a new problem specific
to this paper). To circumvent both problems,; we first approximate the distribution of the
entire non-Donsker stochastic process (T(x) : x € %), and we then deduce a distributional

approximation for supy. IT(x)|. This approach enable us to construct asymptotically valid

confidence bands because

P[r(x) €l.(x), forallx € RB| = P[sgg ﬁ“(x)‘ < qa].

Our technical results are established via a new strong approximation theorem (Section SA-
7 in the supplemental appendix), combined with technical results from Cattaneo and Yu
[2025], Cattaneo et al. [2024a], Chernozhukov et al. [2014a,b], Chernozhuokov et al. [2022],
and Dudley [2014]. Let W = (Y3,...,Y,, X).

Theorem 3 (Confidence Intervals and Bands). Suppose Assumptions 1 and 2 hold.

(i) For allx € B, if n=vh? — oo and nh®*t* — 0, then

P[r(x) ETQ(X)} —1—a
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for go = @711 —a/2).
(i) If n¥h2/logn — oo, liminfn_mo% > —o0, nh?** — 0, and perin({y € & :

(y —x)/h € Supp(K)}) < h for allx € B and t € {0,1}, then
P[r(x) € L.(x), for allx € Bl = 1-aqa,

for ¢ = inf{c > 0 : P[supxegg@n(xﬂ > ¢|W] < o}, where (Z, : x € B) is a
Gaussian process conditional on W with E[Z,(x1)|W] = 0 and E[Z,,(x1)Z(x2)|W] =
QXI,XQ/ Qx1,x1ﬁx2,x2; fOT’ CL” X1, X2 € %

This theorem gives asymptotically valid pointwise and uniform uncertainty quantification
for the conditional treatment effect 7(x) using the location-based estimator 7(x). As ex-
pected in a nonparametric smoothing setting, the undersmoothing condition nh?** — 0
rules out the (I)MSE-optimal point estimator of 7(x). Thus, for implementation of both
pointwise and uniform inference, we address this issue via robust bias correction [Calonico
et al., 2014, 2018, 2022]; see Section 3.3 for details. For uniform inference, our method
requires an additional technical restriction on 98 in order to avoid an overly “wiggly” assign-
ment boundary that would lead to invalid statistical inference. Intuitively, this condition
rules out one-dimensional manifolds that may be “smooth and nice” but nonetheless “too

long”.

3.3 Implementation

The bivariate local polynomial estimator 7(x) and associated t-statistic T(x) are fully adap-
tive to kinks and other irregularities of the boundary 9, provided Assumption 2(ii) holds
and the boundary is not too “wiggly”. Therefore, it is straightforward to implement local
and global bandwidth selectors based on Theorem 2. In particular, replacing the asymptotic

bias and variance constants, By and V, with preliminary estimators, we obtain the feasible
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plug-in bandwidth selectors

7 ( 2‘7)( 1 ) 1/(2p+4) D ( 2 f@ XA/xw(x)dﬁ(x) 1 ) 1/(2p+4)
x = —_— an - =~ - 9
e (2p +2)B2n " 2+ 2) [, BRuw(x)ds(x) 1

where, for a preliminary bandwidth choice a — 0, Ex = ELX — §0,x is constructed using

~ ~ k) X, — X, — k
Bix=eT,, “tk'(X)En[rp( ) (B KX = 01X € ).

with ft,x computed using the preliminary bandwidth a, and where ﬁﬁk) (x) a preliminary

estimator of ,ugk) (x), and ‘A/x = nazﬁ,gx is constructed using the variance estimator with the
preliminary bandwidth a. Omitted implementation details are discussed in Cattaneo et al.
[2025¢]; see also Calonico et al. [2020] for a review on modern bandwidth selection methods
in RD designs with univariate score.

The bandwidth choices /HMSE,X and /EIMSE can be used to implement (I)MSE-optimal 7(x)
treatment effect estimators, both pointwise and uniformly over %. Furthermore, leveraging
the results in Theorem 3, a simple application of robust bias-corrected inference proceeds by
employing the same (I)MSE-optimal bandwidth (for pth order point estimation), but then
constructing the t-statistic '/f(x) with a (p+ 1)th polynomial order instead of pth polynomial
order. The core idea is to simultaneously (i) debias the (I)MSE-optimal point estimator
7(x), and (ii) adjust the variance estimator to incorporate the additional uncertainty intro-
duced by the bias correction. This inference approach has several theoretical advantages
[Calonico et al., 2014, 2018, 2022], and has been validated empirically [Hyytinen et al., 2018,
De Magalhaes et al., 2025].

Finally, regarding the computation of the Gaussian process conditional on W, (Z\n(x) :
x € &), there are two methodological issues to consider. First, simulation is implemented
over a grid of points forming a discretization of the index set of the continuous stochastic
process ZL; it is not difficult to show that as the number of points in the mesh increases,

the approximation becomes more accurate. Second, the estimated (discretized) covariate
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function may not be positive definite in finite samples, but this finite-sample issue can
be easily fixed via regularization; see Cattaneo et al. [2024b] for a discussion and related
technical results.

Our companion software package rd2d implements the procedures described in this section,
see Cattaneo et al. [2025¢]. In Section 6, we use our proposed estimation and inference

methods to re-analyze the effects of the SPP program on college attendance.

4 Weighted Boundary Average Treatment Effect

Without loss of generality, we set [, w(x)d$)(x) = 1, and thus consider the (normalized)

causal parameter

TWBATE:/Q?T(X)W(X)dﬁ(X);

where the weight function w : B — R satisfies Assumption 3. The WBATE aggregates
the heterogeneous treatment effects (7(x) : x € %) at each boundary point according to
the chosen weighting scheme. Our results allow for similar causal parameters defined over a
region of the boundary as in Reardon and Robinson [2012].

The (plug-in, location-based) WBATE estimator is

o / )W (x)d5H (x).
B

In practice, this estimator can be computed by either analytic integration (when 9 is “sim-
ple” enough, e.g., via a line integral), or by forming a discretization of the assignment bound-
ary (e.g., as in Figure 1a). For the latter approach, letting (b; : j = 1,...,.J) be points on
A, the estimator can be computed as Ty ~ Z‘jjzl 7(b;)w(b;), where in some applications
w(b;) could be replaced by some data-driven quantity of interest such as w(b;) = ﬁ
with N; = > 1(||X; — bj|| < h). Furthermore, the parameter and estimator may be

defined only for a segment of &. See Cattaneo et al. [2025¢]| for more discussion on imple-
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mentation.
Our first result establishes a MSE expansion for Tysare. We employ the following notation

for the leading (integrated) bias and variance:

Bypate = Bl,WBATE - BO,WBATE; Bt,WBATE = / Bt,xw(x)dﬁ (X)7
B

and

Qupate = Q1,WBATE + QO,WBATE, Qt,WBATE = / / Qt,xl,wa(Xl)w(Xz)dﬁ (Xl)dﬁ (X2)7
B JRB

for t € {0,1}.

Theorem 4 (MSE Expansion: WBATE). Suppose Assumptions 1, 2 and 3 hold. Ifnh*/log(1/h) —

oo and h — 0, then
E [(/T\WBATE — Tugate) ‘X] = Quears + 1™ Bigyre + 0p(Rn),

where (nh)™' < Queare < (nh)71, and R, = (nh)~1 + h?P+2,

This theorem immediately establishes consistency of the estimator, that is, Tysate = Tupate+
op(1). In addition, Theorem 4 shows that the convergence rate of the estimator is improved
due to the aggregation along the boundary Z: while the pointwise estimator 7(x) had
“variance terms” of order (nh?)~! (Theorems 1 and 2), the estimator Typare has a “variance
term” of order (nh)~!. Intuitively, the estimator Tygyrg corresponds to a “one-dimensional”
nonparametric estimate, thereby having a faster (and optimal) convergence rate.

The infeasible MSE-optimal bandwidth selector is

?

i B ( 2WBATE 1 ) 1/(2p+4)
RATE (2p + 2) Bigare

and a feasible counterpart can be constructed using plug-in estimators of Bygyreg and Vigare,

as we discussed in Section 3 for the estimator of the boundary average treatment effect
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curve, 7(x). Our companion software package rd2d implements this bandwidth selector to
construct an MSE-optimal point estimator Typyre Of Typate, see Cattaneo et al. [2025¢].

For inference, we consider the usual feasible t-statistics

- _ TwBATE — TWBATE
Tupare = —F——,
\/ Queate

where the variance estimator is

ﬁWBATE = ﬁl,WBATE + QO,WBATEa ﬁt,WBATE = / / Qt,xl,XQw(Xl)w(XQ)d57J<b1)dﬁ (X2)7
B JRB

for t € {0,1}.
Theorem 5 (Distributional Approximation: WBATE). Suppose Assumptions 1, 2, and 3

hold. If % = 0(1) and nh**3 = o(1), then

ilelﬂg }IP’(;F\WBATE <u)— ®(u)| =o(1).

Asymptotically valid hypothesis testing procedures and confidence interval estimators can
be constructed directly from this result. For example, under the conditions of the theorem,

a valid confidence interval estimator is

Aa,WBATE‘. = ?WBATE - (I)_l(l - 04/2) \/ QWBATE ) ?WBATE + (b_l(l - 04/2) \/ QWBATE ] )

for any o € (0,1), and because IP)[TWBATE € Ta,WBATE} — 1 — «. For implementation, the

—

MSE-optimal point estimator can be used along with robust bias correction [Calonico et al.,
2014, 2018, 2022, as discussed after Theorem 3. Our companion software package rd2d also

implements this inference procedure.
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5 Largest Boundary Average Treatment Effect

As an alternative to the WBATE, 7ypare, researchers may be interested in learning about the
best (or worst) treatment effect along the assignment boundary: 7Tigae = SUpyeg 7(X). A

(plug-in) location-based estimator of the LBATE is

?LBATE = Sup ?(X)
XERB

Implementation of this estimator can be done over a grid of points discretizing 93, that is,
Teeate A Maxi<j<; 7(b;), where (b; : j =1,...,J) are points on 8. If desired, the parameter
and estimator may be defined only for a region of %.

Theorem 1 establishes consistency of the largest average treatment effect estimator along
the boundary, Tipare = Tisare +0p(1); this theorem can also be used to deduce the convergence
rate for Tipare. Valid uncertainty quantification is established using our new strong approxi-
mation theorem (Section SA-7 in the supplemental appendix) for the non-Donsker t-statistic
stochastic process (T(x) : x € %). Specifically, recall from Theorem 3 that (Z(x) : x € 95)
is a (conditionally on W) mean-zero Gaussian process with feasible (conditional) covariance
function Cov [2(){1), 2(x2)|W} = Q;}ﬁ (AZXIVXQ(AZ;;@ for all x;,xo € 9B, and thus define the

confidence interval estimator

TQ,LBATE = { sup ( T(x) — %\/@) , sup ( T(x) + qa\/g,x> ],

xERB xERB
where q, = inf {¢ > 0 : P(sup,cg ‘Z\(X)‘ > c|W) < a}.

Theorem 6 (Confidence Interval: Largest Treatment Effect). Suppose the assumptions and

conditions in Theorem 3 hold. If liminf,_,. iggz > —00, % = o(1) and nh*** = o(1),

then

P[TLBATE € /I\a,LBATE >1—a+o(l).
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Implementation of /I\a,LBATE is straightforward following the same approaches outlined for
Ta(x) and Ta,WBATE. In practice, finite-sample regularization may be useful to ensure that

infxeg (2 x is bounded away from zero.

6 The Causal Effects of SPP on College Attendance

We illustrate our proposed causal inference methodology for BD designs with the SPP appli-
cation introduced in Section 1. Recall that the dataset has n = 363,096 complete observa-
tions for the first cohort of the program (2014), where each observation corresponds to one
student, and the bivariate score is X; = (X1, X2;)" = (SABER11;, SISBEN;) ", where the first
dimension is the student’s SABERI11 test score (ranging from —310 to 172) and the second
dimension is the student’s SISBEN wealth index (ranging from —103.41 to 127.21). Without
loss of generality, each dimension of the score is recentered at its corresponding cutoff for
program eligibility, so that the treatment assignment boundary is as shown in Figure la. All
the results in this section are implemented using our companion R software package rd2d,
and omitted details are given in the replication files.

The outcome variable of interest is college enrollment, with Y; = 1 if the student enrolled in
college and Y; = 0 otherwise. Figure 2 presents the results for the location-based estimators of
the boundary average treatment effect curve 7(x) estimated at 40 evenly-spaced grid points
b; € B, with j € {1,...,40} depicted in Figure la, using a data-driven implementation
of husex as discussed in Section 3.3. Without loss of generality, each dimension of X; is
standardized in order to accommodate a common bandwidth h. The point estimates coincide
with those reported in Figure 1b, but Figure 2a also includes confidence intervals (CI) and
confidence bands (CB) as developed in Section 3.2. The average treatment effects at the
chosen boundary points are highly statistically significant (different from zero), indicating
roughly homogeneous treatment effects along poverty (b; through bg;) and heterogeneous
treatment effects along academic performance (by; through byy). The average treatment

effect on (the probability of) college attendance remains roughly constant as marginally
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academically achieving students become wealthier (7(x) ~ 0.3 for x € {by,...,bo}), but
it decreases as the wealthiest eligible students increase their academic performance (from
T(ba1) ~ 0.3 to T(bygy) =~ 0.18). Figures 2b and 2c offer “heat maps” for the point estimates

and associated robust bias-corrected p-values along the assignment boundary 9.
[ FIGURE 2 AROUND HERE]

To demonstrate the credibility of the BD design, we repeat the empirical analysis using a
pre-treatament covariate, the education level (measured in years) of the student’s mother, as
the outcome variable. This corresponds to a standard “placebo” analysis on a variable that
is known to be unaffected by the policy, where the treatment effect is therefore expected
to be statistically indistinguishable from zero. See Cattaneo et al. [2020, Section 5] for
more discussion of falsification tests in RD designs. As expected in a valid BD design,
Figure 3 shows that the average treatment effects at the boundary points considered are all

statistically indistinguishable from zero, both pointwise and uniformly.
| FIGURE 3 AROUND HERE]

Table 1 presents the numerical results underlying our figures. The table reports the bound-
ary average treatment effect curve estimated for a subset of boundary points, and the estima-
tors of the aggregate parameters WBATE and LBATE. This table reports results for 7(b;)
with 7 = 1,5, 10, 15, 20, 25, 30, 35, 40 to streamline the presentation, together with results for
the WBATE T7ygare, and the LBATE 7igare. The WATE estimator 7g is implemented with
equal weighting: w(b;) = 1/J for all j = 1,...,J with J = 40. Table 1 also reports the
data-driven MSE-optimal bandwidths used (after undoing the standardization of the bivari-
ate location score X;), and measures of uncertainty quantification (p-values and confidence
intervals).

The point estimation results in Table 1 corresponds to those reported in Figures 1b and
2a; see also Figure 2b for a heatmap plot. The confidence intervals corresponds to those
plotted in Figure 2a, while the p-values were graphically reported in Figure 2¢c. The numeri-

cal findings confirm the lack of heterogeneous treatment effects along the first portion of the
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Method  (husg1, huse2) Estimate T-stat p-value CI

7(by (26.9, 11.9) 0.3103 8.2791  0.0000 (0.2021, 0.4283
7(bs 21.7, 9.6 0.2910 7.0627  0.0000 (0.1518, 0.3722
7(b1o 18.1, 8.0 0.3272 7.1519  0.0000 (0.1733, 0.4194
T(b1s 20.3, 9.0 0.3068 7.9734  0.0000 (0.1747, 0.3822
T(bg 18.1, 8.0 0.3266 9.3204  0.0000 (0.2264, 0.4381
T(bos 20.2, 9.0 0.2938 8.6263  0.0000 (0.2100, 0.4306
7(bsg 25.3, 11.2) 0.2570 6.6527  0.0000 (0.1570, 0.4105
TEb35 24.1, 10.7) 0.2144 3.9771  0.0001  (0.0588, 0.4059
T(byo 31.5, 14.0) 0.1834 3.3760  0.0007  (0.0228, 0.3568
TWBATE 0.2806  15.3726  0.0000 (0.2467, 0.3188)
TLBATE 0.3361 (02610, 04771)

Table 1: Treatment Effect Analysis Along the Boundary.

assignment boundary corresponding to variation in wealth levels as measured by SISBEN
(vertical-axis in Figure 1a), for students who met the minimum criteria of academic perfor-
mance as measured by SABER11 (horizontal-axis in Figure 1a). The numerical results also
confirm the presence of heterogeneous treatment effects for the wealthiest eligible students as
their academic performance increases, that is, 7(x) decreases as SABERI11 increases. These
empirical findings are consistent with the expected behavioral response of students: the pro-
gram has a relatively smaller causal effect among the wealthiest eligible students with higher
academic performance, presumably because this type of student is more likely to be able to
enroll in college in the absence of the subsidy.

Table 1 also reports point estimates and uncertainty quantification for rygarg and 7ipare; the
point estimates coincide with those reported in Figure 1b. The estimated WATE is Tygare =
0.2806, indicating that on average students who are eligible for SPP 28 percentage points
more likely to enroll in higher education. As shown, this aggregate effect masks considerable
heterogeneity along the boundary, which in this application ranges from 7(b;) = 0.3103 to
T(by) = 0.1834. The estimated LBATE is Tigyre = 0.3361, corresponding to students in
the mid-range of poverty as measured by SISBEN (vertical-axis in Figure 1a) and with the

lowest eligible academic performance (horizontal-axis in Figure 1a); see Figure 1b.
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7 Extensions

The theoretical results in the supplemental appendix also consider derivative estimation
for each point on the assignment boundary 98, which is needed to extend our findings to
regression kink designs [Card et al., 2015]. This section briefly discusses two other extensions

of our work that are useful for treatment effect estimation and causal inference in BD designs.

7.1 Imperfect Compliance

Our results can easily be extended to settings with imperfect treatment compliance, where
treatment assignment and treatment status may not be equal for some units; [see, e.g.,
Hernédn and Robins, 2020]. To formally describe this setup, we need to modify the po-
tential outcomes notation. Let D; = 1(X; € &) - D;(0) + 1(X; € 1) - D;(1) be the
observed treatment status, where D;(t) denotes the potential treatment status under treat-
ment assignment ¢ € {0,1} for each unit. Accordingly, the observed outcome is now
Y, = 1(X; € o) - Yi(0,D;(0)) + 1(X; € o) - Yi(1, D;(1)), where the potential outcomes are
now a function of two arguments: Y;(¢,d) denotes the potential outcome for unit ¢ when this
unit is assigned to treatment ¢ € {0, 1} and takes treatment status d € {0, 1}.

The usual fuzzy estimand and estimators are, respectively,

_ v(x) an Cix) — 7y (%)
)=y md (=2

where, for each x € &, 7v(x) = E[Y;(1, D;(1)) — Y;(0, D;(0))|X; = x] and 7p(x) = E[D;(1) —
Di(0)X; = x|, and 7y (x) = ] By, (x) — ] By o(x) and 7p(x) = €] B (x)—e] B g(x), with
B A.1(x) denoting the local polynomial fit (1) when using the outcome variable A € {Y, D}.

Under regularity conditions, our results immediately imply that 7y (x) = 7v(x) + op(1)

and Tp(x) = 7p(x) + op(1), pointwise and uniformly over x € AB. Therefore, using the exact

24



second-order “linearization”,

((x) — ¢(x) = ! (7y (x) — 17v(x)) — TY(X)Q (Tp(x) — T (x)) + R, (x)
Tp(X) Tp(X)
with
() = — ) (2 ) rn(x0) e (Fr(x) — () (o (x) — (X))
D (X)2?D (X) D (X)?D (X) ’

-~

it follows that ((x)—((x) is a linear combination of (7y (x) — 7y (x)) and (7p(x) —7p(x)). The
remainder is negligible because supyc g |Rn(X)] Sp Supxeg |70 (X) —7p(X)|* +Supyeg [Ty (X) —
Ty (X)| Supyeg |Tn(x) — 7p(x)|, and hence Theorem 1 can be applied for each of the two
BD estimators (one with outcome variable Y;, the other with outcome variable D;), under
additional regularity conditions (e.g., infxes 7p(x) > 0). Pointwise and uniform inference
can be established using the results in the supplemental appendix. The causal interpretation
of the fuzzy estimand ((x), for each x € 9B, can be obtained under additional assumptions;
see Arai et al. [2022] and references therein.

Aggregation of causal effects along the boundary under imperfect compliance is also pos-

sible. For example, in the case of the weighted boundary average treatment effect, the

estimand is Gueare = [ ((X)w(x)d$H(x) = [, gggw(x)dﬁ(x), where again the “lineariza-
tion” described above can be used to establish valid estimation and inference methods based
on the estimator EWBATE = f@ g(x)w(x)dﬁ(x). However, the causal interpretation of (ygare

depends on specific assumptions, and may not be straightforward in general; this is an open

question for future research.

7.2 Pre-treatment Covariates

In the context of standard (univariate) RD designs, it is common to incorporate pre-treatment
covariates in the estimation either for efficiency improvements [Calonico et al., 2019] or for
heterogeneity analysis [Calonico et al., 2025]. Following that literature, we can extend our

results to incorporate pre-treatment covariates in the analysis of BD designs. To conserve
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space, we only briefly illustrate the approach in the basic (sharp) setup of Section 2, but the
methods could also be extended to accommodate imperfect compliance.

Suppose that Z, ..., Z, are pre-intervention covariates of dimension dz > 1. For efficiency
improvements, the covariate-adjusted location-based conditional treatment effect estimator

of 7(x) is
7(x) = ey, 2V (x)
with

%(x) = arg min ,, [(Y; C (X =%, T, Z:) ) Kn(Xs — )X, € )],
~eRa

where T; = 1(X; € o), and 1,(X; — x,73,Z;) = [r,(Xi —x)",T; - r,(Xi — x)T,Z] |7
contains the full polynomial basis function for each treatment group but the pre-intervention
covariates are not interacted with the treatment indicator; hence its dimension is q = 2(p, +
1) + dz. For heterogeneity analysis, the covariate-heterogeneous location-based boundary

average treatment effect curve estimator is

. | O2p 4tz p 1) xa
F(x,2) = e, ,Y(x)+¥(x) L, z
Opde xdz

with

%(x) = argmin E, [(Yi —,(Xs — X, T3, Z) ") K (X — x) (X, € .th)],

—YGRQ(Pp-FlH—dZ

where I; denotes the (d x d) identity matrix, Oy, x4, denotes the (d; x dz) matrix of zeros,
z takes values on the support of Z;, and #,(X; — x, T}, Z;) = [1,(Xi — x, T}, Z;) ", (r,(X; —
x)®Z;) ", T;- (rp(X; —x) ®Z;)"]" contains the full interaction between the polynomial basis

function, the treatment assignment indicator, and the pre-intervention covariates.
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8 Conclusion

We developed pointwise and uniform estimation and inference methods for estimation of
the boundary average treatment effect curve, a causal functional parameter that captures
the heterogeneity of treatment effects in BD designs where assignment to treatment is a
deterministic function of a unit’s bivariate location with respect to a boundary. We also
studied point estimation and inference for the weighted boundary treatment effect (WBATE)
and the largest boundary average treatment effect (LBATE), which offer natural aggregation
measures of treatment effect heterogeneity. The main technical challenge in our analysis was
accounting for the effect of the geometry of the assignment boundary 98, which is a one-
dimensional manifold on the plane. Our uniform inference results also relied on a novel
strong approximation theorem that may be of independent interest (Section SA-7 in the
supplemental appendix). Finally, we implement all our methods in the software package
rd2d, available at https://rdpackages.github.io/rd2d/; see Cattaneo et al. [2025¢] for

additional software details.
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SA-1 Setup

This supplemental appendix considers a generalized version of the problem studied in the main paper: the
location variable X; is d-dimensional with d > 1 and support 2 C R, and the boundary region % is a low
dimensional manifold with “effective dimension” d — 1. The special case considered in the paper is d = 2,
that is, X, is bivariate and 9% is a one-dimensional (boundary) curve.

Assumption 1 from the paper is generalized to the following.
Assumption SA-1 (Data Generating Process). Let ¢t € {0,1}.

() (Yi(@t), X)), ..., (Yu(®), X)) are independent and identically distributed random vectors with X =

Hle[al,bl] for —co < a; <by<oo forl=1,---,d.
(ii) The distribution of X; has a Lebesgue density fx(x) that is continuous and bounded away from zero
on .

(iil) pe(x) =E[Y;(1)|X; = x] s (p + 1)-times continuously differentiable on X .
(iv) oZ(x) = V[Y;(t)|X; = x] is bounded away from zero and continuous on I .

(v) supyxeq E[|Yi()]*T|X; = x] < 00 for some v > 2.

We partition & into two areas, of; C R? with ¢ € {0, 1}, which represent the control and treatment regions,
respectively. That is, £ = oy U 1, where oy and &, are two disjoint regions in R?. The observed outcome
isY; =1(X; € #)Y;(0) + 1(X; € &1)Yi(1). The “boundary” now becomes B = bd(y) Nbd(f1) denotes
the boundary determined by the assignment regions &, t € {0,1}, where bd(&;) denotes the topological
boundary of o/;. As in the paper, we assume that & belongs to o/, that is, B C o and B U oy = .

The multidimensional generalization of the three causal parameters studied in the paper are:

1. Boundary average treatment effect curve (BATEC):

7(x) =E[Y;(1) - Y;(0)|X; =x], x€BCRTL

2. Weighted Boundary average treatment effect (WBATE):

o farew(0dn (x)
WBATE f‘%w(x)dﬁdfl(x)

3. Largest Boundary average treatment effect (LBATE):

7(x) = sup 7(x).
xXERB

More generally, this supplemental appendix also considers the derivatives of the BATEC parameter:
() = (%) — g (), xe B,

where, using standard multi-index notation, v = (vy,...,1v4)" € Ng with |v| = v; +... + vy < p and
ugu)(x) =09 - 9" uy(x) for t € {0,1}.
The treatment effect estimator process along the boundary (submanifold) is

(?W) (x) = 2 (x) - i) (x) 1 x € 93),



where ﬂ§“>(x) = eayat(x) for t € {0,1} with

Bt(x) = argmin E,, {(YZ —r,(X; — X)Tﬂ)2Kh(Xi —x)1(X; € )], X € AB,
BeRPp+1
with p, = %T;’!)! , rp(u) denotes the pth order polynomial expansion of the d-variate vector u = (uq, - - - Jug)',

Kp(u) = K(uy/h,--- ,ug/h)/h? for a d-variate kernel function K (-) and a bandwidth parameter h.
We impose the following assumption on the d-variate kernel function and assignment boundary (subman-
ifold) A.

Assumption SA-2 (Kernel and Boundary). Lett € {0,1}.
(i) B is compact (d — 1)-rectifiable, with HI~1(B) positive and finite.
(i) K : R? — [0,00) is compact supported and Lipschitz continuous or K(u) = 1(u € [—1,1]%).

(ili) There exists a set U C R?, such that K(u) > k> 0 for all u € U, Amin( [, rp(2)ry(z) " dz) > 0, and
lim infy, o infxeg [;; K(u)l(x + hu € o;)du 2 1.

Note that in case d = 2, if we assume & is a rectifiable curve, then Assumption SA-2 (i) holds.

Under the assumptions imposed,

B,(x) = H'T,E, [r,,(xif; X)Kh(Xi —X)YA(X; € szft)],

where H = diag((h“")og‘v‘gp) with v running through all %ﬁ multi-indices such that |v| < p, and

Fue = o (55 (54) it 0105, < ),

where its population analogue is

X, — X; —x\T
]__‘t7x:]E[I'p( 3 X)I'p( 3 X) Kh<Xi—X)]1(Xi€<SZ¢t)}.
Note that He]—_s_,/H*H2 = HeL_,/H*Hoo = h~I¥I. In addition, define
Qt,x = ]En |:I'p ()(Zh_x> Kh(Xz — X)]].(XZ S *th)uz:| s

where u; =Y; — []].(Xl € .Q{())/.Lo(xi) + ﬂ(Xz S ﬂl)ul(Xi)] =Y, — ]E[Y”Xl]
For x1,x2 € @ and ¢t € {0, 1}, we introduce the following quantities:

Xi_xl XZ‘—XQ
)l

~ T
Stcime = HEn 1 ) Kn(Xi =% Kn(Xi = x2)2 (1) () L(X, € o)

h h
Xi — X Xz — X T
St = WE 1y (T ey (T2 ) Ka (X — 30 Kn (X = %2)0f (X)X, € o),
~ 1 ~—1 ~ ~—1 ~u ~ ~
QE:;)LXZ = WeL-urt,xl Etxhxzrt,xzel-‘ruv Qgcl),xz = Q(()l;zl,xz + legl,xzﬁ
(v) _ 1 T —1 —1 v) _ oW (v)
Qz57>€17X2 - Wel+urt,x1 2t7x1,xzrt,xQel+V’ qu),xQ - QO,xl,xQ + Ql,xl,va

where &(x) = Y; — rp(X; — x) T[1(X; € o0)By(x) + 1(X; € o1)B,(x)].



Finally, to ensure that various weighted integral functionals on submanifolds (over the assignment bound-

ary %) are well-defined, we impose the following conditions on the weight function.

Assumption SA-3 (Weight Function and Boundary). Letw : B — R with sup,¢ 4 |w(x)| < 00, infxeg |w(x)| >
0, and [, |w(x)[dH* ! (x) < 0.

SA-1.1 Notation and Definitions

For textbook references on empirical process, see van der Vaart and Wellner [1996], Dudley [2014], and Giné
and Nickl [2016]. For textbook reference on geometric measure theory, see Simon et al. [1984], Federer [2014],
and Folland [2002].

(i) Multi-index Notations. For a multi-index u = (uy,...,uq) € N, denote |u| = Z?zl ug, ul = TL  uy.
Denote r,(u) = (1, ug,...,uq,ui,...,u3,...,uf,...,uf), that is, all monomials uf" ---uj® such that
a; € N and Z?Zl a; < p. Define e;4, to be the pg = %‘;‘ﬁ)l—dimensional vector such that eLl,rp(u) =

u” for all u € R% and |v| < p.

(ii) Norms. For a vector v € R¥, |[v] = (35, v2)'/2, ||v]leo = max;<i<g |vi|. For a matrix 4 € R™*",

[All, = supjx; =1 [|4x][l,, p € NU {oo}, and Amin(A) denotes its minimum eigenvalue. For a function
f on a metric space (S,d), || fllcc = Supyeq |f(x)]. For a probability measure  on (&,.%) and p > 1,
define | f[lg, = (fs |f|PdQ)'/P. For a set E C R?, denote by m(E) the Lebesgue measure of E.

(iii) Empirical Process. We use standard empirical process notations: E,[g(v;)] = 237"  g(v;) and
Grlg(vy)] = ﬁzzlzl(g(vi) — E[g(v;)]). Let (&,d) be a semi-metric space. The covering num-
ber N(&,d,e) is the minimal number of balls Bs(e) = {t : d(t,s) < €} needed to cover &. A P-
Brownian bridge is a mean-zero Gaussian random function W,,(f), f € Lo(Z,P) with the covariance
E[Wp(f)Wr(g9)] = P(fg) — P(f)P(g), for f,g € Lo(X,P). A class F C La(Z,P) is P-pregaussian if
there is a version of P-Brownian bridge Wp such that Wp € C(F; pp) almost surely, where pp is the
semi-metric on Ly(Z', P) is defined by pp(f,9) = (|f —gllf o — (] f dP— [ gdP)*)'/2, for f,g € Lo(X, P).

(iv) Geometric Measure Theory. For a set E C X, the De Giorgi perimeter of E related to X is L (F) =
TVig,},9- For d € Nand 0 < m < d, the m-dimensional Hausdorff (outer) measure is given by
H™(A) = limg o H7(A), A C R?, where for each § > 0, H5(A) is defined by taking $H5(0) = 0, and

for any non-empty A C RY, §7(A) = #2/3_1) inf Z;’;l(diam(C’j)/Q)m, and the infimum is taken

over all countable collections C,Ca,--- of subsets of R? such that diam(C;) < 6 and A C U3, Cj.

Integration against £ is defined via Carathéodory’s Theorem following the classical measure-theoretic

literature. The Hausdorff dimension dimg(A) of A is defined by dimg(A) = inf{t > 0 : H?(A) = 0}.

A set A C R? is said to be k-rectifiable if A is of Hausdorff dimension k, and there exist a countable

collection {f;} of continuously differentiable maps f; : R¥ — R? such that H*(E \ U, f;(RF)) =

0. B is a rectifiable curve if there exists a Lipschitz continuous function « : [0,1] — R such that

B = ~v([0,1]). We define the curve length function of B to be £(B) = sup,¢p s(m,7), where II =

{(to,t1,...,IN) N eN,0<ty <t1 <...<ty <1} and s(m,7vy) = Zf\;o [lv(t:) = v(tigr)|ly for m =

(to,t1, ..., tN).

lan] _ 0, a, < b, if there exists

lon] ™ ~

some constant C' and N > 0 such that n > N implies |a,| < C|b,|. For sequences of random variables

(v) Bounds and Asymptotics. For reals sequences a,, = o(b,) if limsup

an = op(bn) if plim,,_, o 3> =0, [an| Sp |by| if imsupy,_, o limsup,,_, . P|§>| = M] = 0.



All limits are taken such that h — 0 as n — oo. Most of our results hold with A fixed but small enough,

but we do not make this distinction explicit to avoid overly-complex statements.

SA-1.2 Mapping Between Paper and Supplement

The results in the paper are special cases of the results in this supplemental appendix as follows.
e Theorem 1 in the paper corresponds to Theorem SA-1 with d = 2.

e Theorem 2 in the paper corresponds to Theorem SA-2 with d = 2.

Theorem 3 in the paper corresponds to Theorems SA-3 and SA-6 with d = 2.

Theorem 4 in the paper corresponds to Theorem SA-7 with d = 2.

Theorem 5 in the paper corresponds to Theorem SA-8 with d = 2.

Theorem 6 in the paper corresponds to Theorem SA-10 with d = 2.

SA-2 Preliminary Lemmas

Let X = (X/,---,X), and recall that ¢t € {0,1}.

Lemma SA-1 (Invertibility). Suppose Assumption SA—1(i,ii) and Assumption SA-2 hold. Then fort = 0,1,

liminf inf Apin (T x) > 0.
h—0 xeA

Lemma SA-2 (Gram). Suppose Assumption SA-1(i,ii) and Assumption SA-2 hold. If % = o(1), then

. log(1/h) S~ log(1/h)
31615 HI‘f,,x - Ft,xH Se Tond }S(lelgg Hl"t’x — I‘mch Sp Tohd

and if further h = o(1), then 1 <p infxcg Hf“‘” < SUPyeg Hffo <p 1.

Lemma SA-3 (Stochastic Linear Approximation). Suppose Assumption SA—1(i,ii,iv,v) and Assumption SA—
2 hold. Suppose % = o(1), then

loa(1/h) _ log(1/h)
d + 1to ’
’I?,]’L n2+v hd

sup |Qex| Se
XERB

and if further h = o(1),

log(1/h) (\/log(l/h) N log(l/h)).

sup |/7§V)(X) - E[ﬁgy)(XMX} - elT+uH_1FZiQt,x’ Se h_u\/ nhd nha 1y hd
n2+v

xXERB

Lemma SA-4 (Covariance). Suppose Assumptions SA-1 and SA-2 hold. If % = o(1), then

+hPH,

S log(1/h)  log(1/h)
5 — <
x:ipe% Hzt,xlaxz Et7x17x2 || ~P nhd + n2iv hd



sup [, = O | o (unt2ly (| CECED) OB i),

X1,X2 v
X1,X2€R nhd n2+v hd

and

sup (L) 2 — ()| e W( log(1/h) , log(1/h) hpﬂ).

XERB ’ nhd nz+v hd

Lemma SA-5 (Bias). Suppose Assumption SA—1(i,ii,iti) and Assumption SA-2 hold. If % = o(1)
and h = o(1), then

sup |E (V) (x)|X] — N§U)(X)| <p thrlqul,

XEB
implying
sup (B[ 9)X] — i (x) = B = op (2171,
with SUPyc g |B(U) t(l;)| e %, and hence Supycg \Et(;)| Sel.

SA-3 Boundary Average Treatment Effect Curve

SA-3.1 Point Estimation and MSE Expansions

Theorem SA-1 (Convergence Rates). Suppose Assumptions SA—1 and SA-2 hold. If log 1/h) =o(1) and
h=o(1), then

1 1
+ 14w

=~(v) _ @) =l
|7 (x) = 7™ (x)| <p b (nhd =

+ hp“)

forx e RB, and

~ _ log(1/h) = log(1/h)
®) (x) — +®) (x)| <» B! Bt
sup [7) () = 7)) S (V=4 i )

The conditional mean-squared error (MSE) is
MSE, (x) = E [(?M (x) — 7 ‘x}
for x € B, and the conditional integrated MSE (IMSE) is
IMSE,, = /gg MSE, (x)w(x)d$H?~*(x),

where w(x) satisfies Assumption SA-3. To state the MSE expansions, we introduce some more notation for

the leading bias and variance:

(w)
B =¥ —BY), BY =el,ril 3 A
|w|=p+1

[ (57) (F77) )



where
V) =V v VY = el TiIS, o Titery, = nh® QM)

Theorem SA-2 (MSE Expansions). Suppose Assumptions SA-1, SA-2 and SA-3 hold. If % =o(1)
and h = o(1), then

MSE, (x) = (1= IB())? & V) op(R2PH272V 4 plpmd=2vl)

nhat2|v|
forx e A, and

1

— +1-lv p(1))?
IMSE,,—/Q[(hP BY) + —am

Vx(")}w(x)dﬁdfl(x) n Op<h2p+272|u\ 4 n71h7d72\u|).

Theorem SA-2 can be used to develop (feasible) bandwidth selectors. If é,((y) # 0, the asymptotic MSE-
optimal bandwidth is

1
(d+ 2[v)) Vi) 1) B

hymse,p p(x) = ”
3 (2p+2—2w|)(BY)2 n

for x € &. Similarly, if f@(B,(("))Qw(x)de_l(x) # 0, the asymptotic IMSE-optimal bandwidth is

(@] [ a1 T
IMSE,v,p — (2]7 +2-— 2|I/|) f@(B,((V))Qw(X)ded_l(x) n .

In practice, the the unknown bias and variance quantities can be replaced with (consistent) estimators
thereof. For example, BY) = E%V,z - ESV,Z with

L A M |
|w]=p+1

where the unknown functions ,ugu)(x) can be estimated using higher-order local polynomial estimators, and

V) = V) + V%) with

o0 _ T plg ol
Vvt x e1+ur zt X XFt x€1+v;

which corresponds to a standard variance estimator (which is also used for asymptotic inference as discussed
below).
Finally, notice that the pointwise convergence rate and MSE expansion can be obtained under the slightly

weaker side rate condition nh? — co. We do not make this distinction explicit to simplify the exposition.



SA-3.2 Distributional Approximation and Inference

Let W = ((X{,Y1),---, (X, Y,)), and recall that t € {0,1}. For |v| < p, define the feasible t-statistic

70 (x) — 1) (x)
Vo

The associated 100(1 — a)% confidence interval estimator is

~v) ~(v o ~(v ow
i) (x) = [T< (%) — gar /ALY, 7 ><x>+¢a\/ﬂ;,i],

where ¢,, denotes an appropriate quantile depending on the desired confidence level « € (0, 1), and coverage

T (x) = X € B.

objective (pointwise vs. uniform over &). The following theorem establishes pointwise asymptotic normality
and validity of confidence intervals. Let ®(+) be the cumulative distribution function of a standard univariate

Gaussian random variable.

Theorem SA-3 (Confidence Intervals). Suppose Assumptions SA-1 and SA-2 hold. If nh? — oo and
nh?h2P+tY) 0, then

sup [P(P" (x) < u) — ()| =o(l), xe,
ueER

and

PrWx) el x) =1-a+o(l), xec%,

provided that ¢o = inf{c > 0: ]P’(|2| > ¢|W) < a} with 2|W ~ Normal(0, (AZ,(:',)c)

For uniform inference, we rely on a new strong approximation result established in Section SA-6. First,
we simplify the statistic ’T(U), which is not directly a sum of independent random variables. Let

—( X, —
T (x) = Ea [ (@) 2e ] , H [1(X; € ah)TTL — 1(X; € o) Tk rp (1)

X,X

Kp(X; — X)ui:|a
where recall that u; = Y; — Zte{o,l} 1(X; € o) (X;) = E[V;X,].

Theorem SA-4 (Stochastic Linearization). Suppose Assumptions SA-1 and SA-2 hold. If % =o(1)
and h = o(1), then

sup [£ () — T (9| o W1V + /log(/m) (1 2ELLR) . loaL/h)y

XERB nhd n5$5hd

We can now exploit the linear structure of (T(V)(x) 1 X € &), that is, an average of i.n.i.d. random vectors.

Define the following functions indexed by x € %:

gx(w) =1(u € o)A (u;x) — L(u € )4 (u;x), ued,



and

%(V)(u;x) = n_l/Q(QSc‘f ) 1/2e1+uH_1F;irp <H;X> K (u - x), ueZ, te{0,1}.

Define the associated class of functions & = {gx : x € B} and & = {Id}, where Id(x) = =, for all z € R.

Then, the residual-based empirical process is

n

Ro(g.r) =n~ 23" [g(X)r(¥) — g(XOEF(VDX],  geFren,

i=1

and therefore
T (x) = Ru(gx,1d),  x € B.

Leveraging ideas in Cattaneo and Yu [2025], Theorem SA-11 gives a new Gaussian strong approximation
that can be applied to our current setup. Specifically, our new theorem allows for polynomial moment bound
on the conditional distribution of Y;|X;.

Theorem SA-5 (Gaussian Strong Approximation: T(V)). Suppose Assumptions SA—1 and SA-2 hold, and
that there exists a constant C' > 0 such that for t € {0,1} and for any x € B, the De Giorgi perimeter
of the set By x = {y € & : (y —x)/h € Supp(K)} satisfies Z(E;x) < Ch?~L. If liminf, o lzgz > —00

and nh? — 0o as n — oo, then (on a possibly enlarged probability space) there exists a mean-zero Gaussian

process Z®) indexed by B with almost surely continuous sample path such that

1 v 1
1\ 7w 1 \2
(v)

where < is up to a universal constant, and Z") has the same covariance structure as T ~; that is,
Cov[T™ (x1), T (x2)] = Cov[Z®) (x1), 23 (x3)] for all x1, %5 € B.

e

E[ sup ‘T(V)(x) AL (X)” < (logn)
XERB

Theorem SA-5 can be used to construct confidence bands for (1(*)(x) : x € B). Let (2(“)(3() :x € B) be

a (conditionally on W) mean-zero Gaussian process with feasible (conditional) covariance function

O,

Cov [ 70 (x1), 2 ()| W] = 2z
Q(V) Q(V)
X1,X1 " %X2,X2

X1,Xo € AB.

Theorem SA-6 (Confidence Bands). Suppose the assumptions and conditions in Theorem SA-5 hold. If

liminf,,— o iggz > —00, % o(1) and h?™1v/nhd = o(1), then

sup ]P’(sup ’T (x)| <u) —P(sup‘é\(”)(x” Su‘W)’zoP(l)
u€R XERB XERB

and

~(

IP’[T(”)(X) c Iau)(x), forallx € %’] =1-a+o(l),

provided that ¢q = inf {¢ > 0: P(supycg |2(U)(X)’ > c’W) <a}.



SA-4 Weighted Boundary Average Treatment Effect

Without loss of generality, we set f% b)d$H%~1(b) = 1, and the parameter of interest is the (weighted)

average treatment effect along the boundary:

TWBATE:/ T(b)w(b)dﬁdil(b)’
&

where the weight function w : & +— R satisfies Assumption SA-3.

The (weighted) boundary average treatment effect estimator along the boundary is
TUBATE = /gg ?(b)w(b) dﬁdil(b)a
Our first lemma in this section studies the conditional bias of Tygare. Let
Bygare = B usate — Bo,uate, By ypate = /% Bt(f’,}w(b)dﬁd*(b),

for ¢ € {0,1}.

Lemma SA-6 (Bias: WBATE). Suppose Assumption SA-1(i)-(iii), SA-2 and SA-3 hold. If log 1/h =o(1)
and h = o(1), then

E[Tupate| X] — Tupate = h? ! Bypate + op(hPT1).
The next lemma studies the conditional variance of Typyre, and a plug-in estimator thereof. Let
Queate = 1 usate + Qo,uBATE, Q4 uBaTE = / / ngbl b, W(b1)w (b2)d$H* " (by)d$H* " (by)
and
Oueare = ﬁ1,w13ATE + QO,WBATD ﬁt,WBATE = /@ /9? ﬁi?ﬁl,mw(bl)w(bg)dﬁd‘l(bl)dﬁd‘l(bz),

for t € {0, 1}.

Lemma SA-7 (Variance: WBATE). Suppose Assumptions SA-1, SA-2 and SA-3 hold. If log(l/h) = o(1)
and h = o(1), then

V[7upare|X] = Queare + Op (hd*l W) = Queate + 0p((nh) 1),
where
(nh)™" < Qupare < (nh) ™!
If, in addition, :)fil/:(j =o(1), then

V[ Tumare| X] = QWBATE + op((nh)™1).

10



Theorem SA-7 (MSE Expansion: WBATE). Suppose Assumptions SA-1, SA-2 and SA-3 hold. If
10551;1/:3 =0(1) and h = o(1), then

E[(Tusate — TWBATE)2|X] = Queate + h2p+23v2:BATE + OP((nh)il) + OP(h2p+2)-
MSE-optimal bandwidth selection follows directly from Theorem SA-7.

For inference, we consider the feasible t-statistics

T _ TwBATE — TWBATE
WBATE — —  /—— -

\/ QWBATE

Theorem SA-8 (Asymptotic Normality: WBATE). Suppose Assumptions SA-1, SA-2 and SA-3 hold. If
% = 0(1) and nh?*3 = o(1), then

sup |P(Typare < u) — ®(u)| = o(1).
u€ER

SA-5 Largest Boundary Average Treatment Effect

Consider the maximum treatment effect over the boundary, defined by

TLBATE = SUp T(b)-
beA

Theorem SA-9 (Convergence Rate: LBATE). Suppose Assumptions SA-1 and SA-2 hold. If % =
o(1) and h = o(1), then

N log(1/h log(1/h
’TLBATE —TLBATE| <p g(1/h) + g(1/h) + hPTL,

nhd Nz pd

~

Recall from Section SA-3.2 that (Z(x) : x € %) is a (conditionally on W) mean-zero Gaussian process
with feasible (conditional) covariance function

> = Qx x
Cov [Z(xl), Z(XQ)‘W} - x e B

Qxl s X1 Qx2 s X2

Consider the confidence interval given by

/I\(x,LBATE = {SUP (?(b) - Qa’\/ Qb,b), sup (?(b) + Ga ﬁb,b)] ,
beAB beAB
where ¢ = inf {¢ > 0 : P(sup,cgq |2(x)| > ¢|W) < a}.

Theorem SA-10 (Confidence Interval: LBATE). Suppose the assumptions and conditions in Theorem SA-5
hold. If liminf, e 1222 > —c0, logn)® o(1) and h?*1v/nhd = o(1), then
ogmn n2+v phd

P[TLBATE € /I\a,LBATE:| >1—a+o(l).

11



SA-6 Gaussian Strong Approximation

We present a Gaussian strong approximation theorem, which is the key technical tool behind Theorem SA-5.

The theorem builds on and generalizes the results in Cattaneo and Yu [2025]. Consider the residual-based

empirical process given by

Rufoor] = 2= 3" [ote)r) ~Blacorll].  ge@.re .

where @ and & are classes of functions satisfying certain regularity conditions.

SA-6.1 Definitions for Function Spaces

Let & be a class of measurable functions from a probability space (R?, %(R?),P) to R. We introduce several

definitions that capture properties of .

(i)

(i)

(iii)

(iv)

F is pointwise measurable if it contains a countable subset &€ such that for any f € &, there exists a

sequence (g, : m > 1) C & such that lim,— o0 gm(u) = f(u) for all u € R%.

Let Supp(%) = Uges Supp(f). A probability measure Qg on (R?, B(R?)) is a surrogate measure for
P with respect to & if

(i) Qg agrees with P on Supp(PP) N Supp(F).
(ii) Qg (Supp(F) \ Supp(P)) = 0.
Let @z = Supp(Qg).
For ¢ =1 and an interval ¥ C R, the pointwise total variation of # over .# is
P-1
PTVy , = sup sup sup > |f(aiy1) — flai)l,
feF P>19pes [

where Pp = {(a1,...,ap) : a1 <--- < ap} denotes the collection of all partitions of 7.

For a non-empty € C RY, the total variation of # over € is

TVg g = inf sup sup u) div(¢)(u)du ’
sae=, dnf swp sup | f(w)div(o)udu/[ o]

where O(®) denotes the collection of all open sets that contains €, and Z,(%) denotes the space of

infinitely differentiable functions from R? to R? with compact support contained in %.

For a non-empty € C RY, the local total variation constant of # over &, is a positive number Kz &

such that for any cube @ C R? with edges of length ¢ parallel to the coordinate axises,

Vg one < K gl? L.

12



(vi) For a non-empty € C R?, the envelopes of & over & are

Mgz ¢ = sup Mg ¢ (u), Mg %(u) = sup | f(u)], uceg.
uce feF

(vii) For a non-empty € C RY, the Lipschitz constant of & over € is

L9;7% = Sup Sup M.
fEF ui,u2€%€ ||U-1 - U—2||oo

(viii) For a non-empty € C RY, the Ly bound of & over € is

Egg = sup/ |f|dP.
@

feF
(ix) For a non-empty € C RY, the uniform covering number of & with envelope Mg & over € is

Nz 5 (0, Mg ¢) =sup N(F, ||| .2, 0 [Mzgll,,), 0 €(0,00),
m

where the supremum is taken over all finite discrete measures on (%, %B(%)). We assume that Mg ¢ (u)

is finite for every u € 6.

(x) For a non-empty € C RY, the uniform entropy integral of # with envelope Mg ¢ over € is

5
Jo(6,F, Mz ) = / \/1 +logNg ¢ (e, Mg % )de,
0

where it is assumed that Mg & (u) is finite for every u € .

(xi) For a non-empty € C RY, & is a VC-type class with envelope Mg & over € if (i) Mg & is measurable
and Mg &(u) is finite for every u € €, and (ii) there exist cg ¢ > 0 and ds g > 0 such that

Ng e(e, Mz ¢) < coge” %77, g€ (0,1).

If a surrogate measure Qg for P with respect to # has been assumed, and it is clear from the context, we
drop the dependence on € = Qg for all quantities in the previous definitions. That is, to save notation, we
set TVg = TVg g, , K& = Kg.05, Mg = Mz ., Mx(u) = Mg g, (1), Ly = Lg g, , and so on, whenever there is

no confusion.

SA-6.2 Residual-based Empirical Process

The following theorem generalizes Cattaneo and Yu [2025, Theorem 2] by requiring only bounded polynomial

moments for y; conditional on x;.

Theorem SA-11 (Strong Approximation for Residual-based Empirical Processes). Suppose (z; = (xi, ;) :
1 <i < n) are i.i.d. random vectors taking values in (R, B(RI*1)) with common law Pz, where x; has
distribution Px supported on X C R%, y; has distribution Py supported on ¥ C R, SUDyco E[ly;[*T|x; =
x| < 2 for some v > 0, and the following conditions hold:

13



(i) @ is a real-valued pointwise measurable class of functions on (R, B(R?),Px).

(ii) There exists a surrogate measure Qg for Px with respect to & such that Qg = m o ¢g, where the

normalizing transformation ¢z : Qg +— [0,1]? is a diffeomorphism.
(iil) & is a VC-type class with envelope Mg over Qg with cy > e and dg > 1.
(iv) R is a real-valued pointwise measurable class of functions on (R, Borel(R), Py ).

(v) R is a VC-type class with envelope Mg 9 over ¥ with cgy > e and dg gy > 1, where Mg o (y) +
PTVg 1yl 1y < V(L +y|) for ally € ¥, for some v > 0.

(vi) There exists a constant k such that |logs Eg| + |logy TV| + |logy Me| < klogyn, where the constant
TV = max{TVg, TVex oy, .0, } With %a = {0(,r,7) : 17 € R, 7 € (0,00]}, and 0(x,r,7) = E[r(y:)1(Jy;| <
T)x; =x%] forx e Z.

Define the residual based empirical process
1 n
Ry(g,7) = n Zg(xi)(r(yi) — Elr(yi)[xil), gey,reR
i=1

Then (1) on a possibly enlarged probability space, there exists a sequence of mean-zero Gaussian processes
(ZE(g,r): g € €,r € R) with almost sure continuous trajectories such that:
e E[R.(g1,71)Rn(g2,72)] = E[ZF(g1,71)ZF(ga,72)] for all (g1,71), (g2,72) € € X R, and

o E[ HR" — Zﬁ”?x@] < Cvdlog(cn)pp,

with

v _ v/ M M E 1;2
p = /AToglen) £ (VI E) 4 Mg~ 54E 4 2 YRR )
n T,

where C' is a positive universal constant, c = cg + cq,y +k, d = dgdg yk, and

L {(CizM%HTVdE?)U(MH) (c‘f/Qcg/QMgTVd/QEng/Q)1/(d+2)}
n— nl/(2d+2) ) nl/(d+2) ?
d—1 1
ci=dsup || 0;(Vog(x)), Cog=SUp — =, L = max{Lg, Ly x%y.04 J;
xe@g]l;[l ]( ( )) xEGy O'd(V(ZSg(X)) { XUz, x}

and (2) if R is a singleton, then we can replace TV and L in the previous conditions and statements by
TVsing = max{TVg, Ve, a,}, and Lgn, = max{Lg,Lyxv, 0.}, respectively, with 7 = {0(-,r) : r € R},
and 0(x,7) = E[r(y;)|x; = x| forx € X.

Remark SA-1. The class %% comprises truncated conditional means at all truncation levels. Its Lipschitz
and total-variation constants can be bounded, for example, if f(y | x) is Lipschitz in x uniformly over (x,y)
in the support of (x;,y:;). When & is a singleton, it suffices to assume regularity only for Vg, the class

containing the (untruncated) conditional mean functions, which is easily justified.
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SA-7 Proofs

SA-7.1 Proof of Lemma SA-1

Assumption SA-1 (ii) implies

Ty = E[rp(xih_ X)rp(xih_ X>TKh(XZ- —X)L(X; € )

:/M rp(u;X)rp(u;X)TKh(u—x)f(u)du

:f(x)/d rp(u;X)rp(u;X)TKh(u—x)du—ko(lL

where in the last line we have used fﬂt(“—;x)"Kh(u —x)du = O(1) for any multi-index v from standard

change of variable argument.
I. Polynomial Representation of Minimum Eigenvalue

For simplicity, call

. u—x u—x\ '
Stx = lim Sux(h),  Sux(h) = /M v (5 ) (F5) Kn(u—x)du.
A change of variable gives
Six(h) = /rp(z)rp(z)TK(z)]l(x + hz € dy)dz.

Let a € RP», where p, = (de!r;f)!)!' Then the equivalent representation of minimum eigenvalue gives

Amin (St x(h)) = min /(aTI‘p(Z))QK(Z)]].(X + hz € dy)dz

llall=1

> Kk min /(aTrp(z))2]1(X+ hz € d;)dz, (SA-1)
U

lall=1
where in the last line we have used K (u) > & for all u € U.
II. Mass Retaining Ratio in Treatment/Control Region

Denote Ej(x,t) ={z € U : x+ hz € &;}. Assumption SA-2 (ii) implies there is some upper bound A > 0
of K(-). Hence for ¢y = 1/2 liminf, o infyeg [;; K(u)l(x + hu € #/;)du, we have

Am(Ey(x,t)) > /UK(u)]l(x+hu € dy) > co

for small enough A, which implies

Am(()U) '

m(Ep(x,t) > am(U), a= (SA-2)

II1. L, Integral of Polynomials in Full v.s. Treatment/Control Regions
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Consider S = {f € P, : fU f(u)®du = 1}, where P, is the collection of all p-order polynomials. Let
(9,1 < j <p) be a set of orthonormal basis of (P, ||-||r,). Then T'(a) = Z§=1 a;¢; is an isometry. Since
T(S) = {a € R? : |la]] = 1} is compact, S is also compact in (P, ||-||r,). Since P, is p-dimensional,

equivalent of norms implies that S is also compact in (%, ||-||z..). Now consider
D,(e) =m{ueU:lg(u)| <e}), g€ S,e>0,

and

¥(q) = sup {5 >0:PQ4(e) < %m(U)}.

Since [;;¢*> = 1 and ¢ is polynomial, lim. o ®4(c) = 0 and ®4(||¢[/oc) = m(U). Continuity and Lipchitzness
of g € S imply ¥(q) >0 for all ¢ € S.

Next, we want to show 1 is lower-semicontinous function on (P, ||-||z..). Suppose g, — ¢ uniformly on
U. For every ¢ € (0,v(q)), there exists > 0 such that ®,(e9) < §m(U)—n. Continuity of polynomials and
the fact that level sets of polynomials have zero Lebesgue measure imply 1|4, 1<<o1(-) = Lfjqj<co3(+) almost
surely. By Dominated Convergence Theorem, @, (g9) — ®4(e0). Hence for large enough n, @, (go) <
$m(U), which implies e9 < 1)(gn). This implies liminf,, o 1(gn) > €o. Since g is arbitrary in (0,(q)), we
have liminf, _, o ¥(g,) > ¥(q).

Compactness of S and lower-semicontinuity of ¢ implies ¢ attains its minimum on S. Since ¥ (gq) > 0 for
all ¢ € S, we know e, = inf,es1(g) > 0. Then for every g € S,

[ zem(Bn\ (i <=)
Eh(x,t)
&2 (m(En(x,1) — m({lgl < =.}))

2 SmU).

Y

> €

Scaling ¢ from S gives

[ & aeam (SA-3)
U

(] e}

/ ¢ > el
Ep(x,t)

IV. Lower Bound of Minimum Eigenvalue

Equations (SA-1), (SA-2) and (SA-3) together give for small enough h,

inf Apin(Stx(h)) > K inf min/ a'r,(z 2dz7
3 Auin(Sux(W) 2 jnt min [ (aTry(2)

o . T 2
— 1min a r,(z))°dz
5 min, [ a7y
S 22 &y T
> ke 2)\mm(/Urp(z)rp(z) alz)7

which implies lim inf),_,¢ infxeg Amin(Se,x(R)) > 0.
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SA-7.2 Proof of Lemma SA-2

Since ftx is a finite dimensional matrix, it suffices to show the stated rate of convergence for each entry.
Let v be a multi-index such that |v| < 2p. Define

gn(&,x) = <§_hx)v %K (g—hx) 1(ed), (€T ,xeRB

and F = {gn(-,x) : x € B}. We will show F is a VC-type of class. In order to do this, we study the

following quantities.

Constant Envelope Function. We assume K is continuous and has compact support, or K = 1(- € [-1, 1]9).
Hence there exists a constant Cy such that for all [ € &, for all x € B, |I(x)| < C1th~%=F.

Diameter of F in Ly. supjeg ||Ulpo = Supyeg([a-x 1y K(y)*fx (x + hy)dy)'/? < Cyh=%2 for some
) h
constant Cy. We can take C; large enough so that o = Coh~%2 < F = Ch~ 7.

Ratio. For some constant C3, § = & = C3V hd.

Covering Numbers. Case 1: K is Lipschitz. Let x,x’ € 9. Then, for a generic evaluation points

x = (21,...,2q)" and X' = (z},...,2,)"

)
/

splo63) - (63 < |(S22) " (S520) - (8520)" - (52"

() (55

Sh x = X,

Kn(§ —x)

Kp(§ —x) — Kp(§ —x)

since we have assumed that K has compact support and is Lipschitz continuous. Hence, for any ¢ € (0, 1]

and for any finitely supported measure  and metric ||-[|5 , based on L2(Q),

d
@) diam () diam(Z)\*

N(F, || Fll, o) < N Hlloose [l o b4 < [ - <
(- WFlgz) < N, [l e Il >N<5|F||Q,2hd+1 < (fem@y’,

where in (i) we used the fact that e [|F|4 , hitl < eh < 1. Hence, & forms a VC-type class, and taking
Ay = diam(Z')/h and Ay = d, supgy N(F, |||
is over all finite discrete measure.

Case 2: K = 1(- € [-1,1]%). Consider

02:€1Flg2) S (Ay/e)*2, e € (0,1], and where the supremum

(e = (57) e e at),  exe,

M = {m,(-,x) : x € B} and the constant envelope function M = Cyh~V=?  for some constant Cy only

depending on diameter of 2. The same argument as before shows that for any discrete measure ), we have

AT Y damld) )" (HmEy

e Mg, hHTH h

0:2) S N, [Hlloos2 [ M [l BV 5

The class & = {1(- — x € [-1,1]%) : x € B} has VC dimension no greater than 2d [van der Vaart and
Wellner, 1996, Example 2.6.1], and by van der Vaart and Wellner [1996, Theorem 2.6.4], for any discrete
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measure Q, N (¥, ||| &) < 2d(4e)**e™44, 0 < e < 1. It then follows that for any discrete measure @,
N(F gz elHlgo) S N gz e/2Hlga) + N, Mgz €/2) £ 27h™ %™ + 2d(32¢) ™.

Hence, taking 4; = (2?h~7 4 2d(32¢))h~IV and A, = 4d, supg N(F, [lga:€1Fllgo) S (A1/e)42, ¢ €

(0, 1], where the supremum is over all finite discrete measure.

Mazimal Inequality. By Corollary 5.1 in Chernozhukov et al. [2014b] for the empirical process on class &,

B sup [Elgn (X)) ~ Elgn (X0, )] £ /A log(41/0) + 24 tos(4,/9)
log(1/h) , log(1/h)
~ nhd nhd ’
log(t )

where A1, Ay, 0, F, § are all given previously. Assuming ) 5 0asn — oo, we conclude that sup,c 4 ||f‘t,x—

T x| <p \/%. Hence, 1 <p infycg ||I‘t7x|| <P SUPxc HFLXH <p 1. By Weyl’s Theorem, sup, 4 Amnin (T ) —
Amin(Tex)| < supgeg Hf‘t,x — I‘t,xH <p \/%. Assuming that Amin(T'tx) 2 1 (which we will ver-

ify in the last part of the proof), then we can lower the minimum eigenvalue by 1nfxe@ )\min(f‘t,x) >
infxes Amin (Tt,x) — SUDycg \)\min(f‘t’x) — Amin(Tex)| Zp 1. It follows that sup,cg HI‘

Py [T = Dick| < supecs | D7oa [ Proe — T[T S /22042

SA-7.3 Proof of Lemma SA-3

txH <p 1 and hence

The proof is similar to the proof of Lemma SA-2. Let v be a multi-index such that 0 < |v| < p. Let

e = () Kae e e ), exea

Define the class of functions & = {({,u) € ' x R+ g,(£,x) : x € B}.

Envelope Function. Since K is continuous on its compact support, there exists a constant C; > 0 such
that g, (&, x)u| < C1h~%ul, for £,x € X and u € R. We define the envelope function F(¢,u) = C1h~%ul,
for £ € & and u € R. Moreover, by Assumption SA-1(v), let M = max;<;<n F(X;, u;), then

E[M2 S B ] max [uif?]'"? S h7UE[ max [u ] g gt/ @0
1<i< 1<i<n

Diameter of F in La. Recall we denote u; = Y; — E[Y;|X;], then

supIEl[l(Xi,ui)Q]l/2 < sup E[uﬂXz = 5]1/2 sup E[gn(Xi,§)2]1/2 < O3h~ 42 = 5.
l€F cex cex

Ratio. We set § = —9— < h4/2,
Fllp, ~

Covering Numbers. Case 1: K is Lipschitz. Let Q be a finite distribution on (2 x R, B(2") ® Borel(R)).
lgn (€.%)—gn (£.x")] < pd-t,

lx—x"[[oo

Let x,x’ € 2. In the proof of Lemma SA-2, we showed that SUP¢c g SUDx x/ e

Hence,

lgn (X3, %) i = gn(Xi, X uilloz < llgn (%) = gn (X )loo [uillge S P71 I Fllg I = X [lsc-
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It follows that supg N (F €l Fllg2) S (dl%h(”c[))) where sup is over all finite probability distributions

n (2 xR, B(X) @ Borel(R )) Letting Ay dlam(”cr) and As = d, we conclude that

SgpN(J g2 €lFllga) S (Ar/e) €€ (0,1].
Case 2: K is the uniform kernel. Let

malex) = (SF) paceam.  exeq,

with M = {(&,u) € T xR = m,(£,x)u : x € B} and envelop function M(x,u) = C1h~?Vl|u|, for a
positive constant C; depending only on K. By similar arguments as Case 1 and the proof of Lemma SA-2, it
follows that supgy N(4,|-lg 2. €l|M|l@2) S (dia%h(%)){ where the supremum is taken over all finite discrete
measures. Taking & = {1(- —x € [-1,1]¢) : x € B}, the proof of Lemma SA-2 shows that

sup N (Z, [l [l g0, €) < 2d(4e)*’e™, e 0,1],
o :

where the supremum is taken over all finite discrete measures. Taking A; = (2?h~? + 2d(32¢)4)h~IV! and
Ay = 4d, we have

SgpN(d' Arllgz e lFllge) S (Ai/e)™e e € (0,1],

the supremum is over all finite discrete measure.

Mazimal Inequality. By Corollary 5.1 in Chernozhukov et al. [2014b],

[ M]|p,2 A2 log(A1/9)
E E, X < — /Ay log(A :
[322’ [9n Z,X)ul]ﬂwf og(A1/0) + "
< Jlos(/h) | log(1/h)
~ nh niepd

Since Q: x is finite-dimensional, entry-wise convergence implies convergence in norm with the same rate.
Hence, sup,cq HQt7XH <p 4/ log(l/h) + 108/M) By Lemma SA-2,

n2+v hd

sup [ (x) — B[ (x)[X] - e], , H'T; 1 Qux| = sup \GLUH_l(f;i —T) Quxl

xed
< h|,,|\/log(1/h) (\/log(l/h) N log(l/h))

nh nhd nz pd
and
A% (x) — B[ ()[X]| <o b~ log(1/h) | log(1/h)
igg;W [ () |X]| <e ( Tt néiﬁhd)
which completes the proof. O
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SA-7.4 Proof of Lemma SA-4

Let ni(x) = >_ycq0,1y L(Xi € ) (1 (X)) — By (x) "R,(X;—x)). Then, for all x,y € %, the difference between

the estimated and true variance matrices is

Etx,y - Et,x,y = MLx,y + M2,x,y + M37x7y + M4,x,y

where
Mioey = B (P55 ) (F57) ke () K (P ) momtvnexi )]
My = e (X572 (K52 o () (K52 0 + o, o).
M = o () (5) e () () 2 - ks e ).
Macy = B ey (55 s (F0) et () (B Joxaix, < on)
; X; X; X;

R, — [log(1/h) n lo%g/h)‘
nhd n2+v ha

First, we present a bound on max;<i<y |17;(x)|1((X; —x)/h € Supp(K)). By Lemma SA-5 and Lemma SA-

3, and multi-index v such that |v| < p,

sup fe, ir () — el (0] S B (A7 H 4+ 9R).
xe

Since K is compactly supported, we have

max | 371X € o)(B,(x) — B,(x)) "Ry (X — 0)2(X; — )/ € Supp(K)| o 17 + R,
te{0,1}

Since py is p + 1 times continuously differentiable,

> X € ) (u(X) = By(x) Ry (Xi = x)L((X; — x)/h € Supp(K)| S b7+,
te{0,1}

max
1<i<n

It follows that

sup max |n;(x)|1((X; — x)/h € Supp(K)) <p WP + R,..

xe 1<i<n

Term M xy. From the proof for Lemma SA-2, sup, yco ‘En [gn(Xi; %, ¥)] —E[gn (X;; %, y)]| <p 1/ %.
Moreover, sup, oo |Elgn(Xi;%,y)]| Sp 1. Hence sup, ycq [Enlgn(Xiix,y)]| Sp 1. Thus,

sup |En[gn(Xi; %, y)m:(x)n:(y)]| < sup max |n;(x)[1((X; —x)/h € Supp(K)) - sup |E,[gn(Xi; %, y)]|
X,yERB xey 1<isn X,ye&
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SIP’ (hp+1 + %n)27

where we have used Theorem SA-1, which does not depend on this lemma, for sup,¢g |fie(x) — pu(x)|

hPT! + R,,. Finite dimensionality of M x y then implies

| Se (WP + Ry

sup_[|Mixy
X, yEARB

Term Mg x y. From the proof of Lemma SA-3, supy yco |En[gn(Xi; X, y)ui] — E[gn(Xi; x,y)ui” <pr R,.
Moreover, supy ycq |Elgn (Xs: %, y)uilbig| Sp 1. Hence, sup, yeq |Enlgn(Xiix, y)us)| Sp 1. Thus,

sup | Ep [gn (Xi; %, ) (10:(%) + 0i(y))us)| < sup |fie(x) — pe(x)| sup Enllgn(Xisx, y)uil] Sp B+ R,
X, YyERB X, YERB X, yERB

which implies that

sup [ Moy | Sp hPHH + Ry,
X,yERB

Term M3 x y. Define I, (-, ;x,y) : L xR — R as

eexy) = 0 () () K () K (2t e a0 - 020,

and consider the function class £ = {l,(-,sx,y) : x,y € L}. Let L : X xR — R be L({,¢) = 5[e® — 07 (€)|
with ¢ = supy yegp |(&Tx)u(§ny)VK(§fo>K &Ty) ’ By similar argument as in the proof for Lemma SA-3,
we can show & is a VC-type class such that E[l,,(X;,u;;%,y)] =0, for all x,y € X,

sup Ell,(Xi,e;%,y)%)% < sup Elgn(Xy, us;x,y)?)? sup V[u2|X, = ¢] S h™%2
X, yeX X, YERB Eex

and

1 2
E[ max L(X;,u:)?]? < h"E[ max u!]"? < A 9E[ max u2T0] 7% < b7t
1<i<n 1<i<n 1<i<n °

Applying Corollary 5.1 in Chernozhukov et al. [2014b], we obtain

log(1/h)  log(1/h)
En ln Xi7 iy X, S -
xsyg%‘ I (X uss %, y)]| Sp Rl T T il

and

log(1/h)  log(1/h)
Myl S Chd
xs;zp@H sxyll Sp nhd nz hd

Term My xy. Notice that {g,(;x,y)o2(") : x,y € B} is a VC-type of class with constant enve-

lope function Ch~? for some positive constant C, where SUPy y ez SUPeeq [9n (€5, y)o2(€)] < h™?% and
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SUpy yeg Elgn (Xi; x, ¥)20¢(X;)2)2 < h=%/2. Then, similar to the proof of M x,y, we conclude that

log(1/h
sup [En[gn (X5 %,¥)] — Elgn (X%, ¥)]| S L{é)
xX,yERB nh

and

log(1/h)
M, | <y =22
x?g@” 1xyll S o

Final result. Combining the the upper bounds of the four terms,

sup Sy — iy <p 0t 4/ 8L Tos(l/h)

oL nhi T prpa
which implies supy yecg ||§]17x7y|\ <p 1. Tt follows that
sup [0, = 00,1 < —o (s B~ T[S [T,
Xy e 1,x,y 1x,yl = hd+2|y| Xy e 1,x 1,x XY 1y

+ sup D7 By — Srs [IT74 ]
X,yER

)

~—1 _
e L IERY [ riy)

1 log(1/h)  log(1/h)
p+1
~ nhdt2lv] (h + nh + nz+v hd )

By Assumption SA-1(iv) and Assumption SA-2(ii), infxc g Q&Vi z
(nh4+2¥1=1 Furthermore,

V
sup \/ xx \/ X, X

xXERB

p (nh@t2¥1)=1 Therefore, infycg o) >

X, X A~

(u) v

<p sup Vnhit2¥l|Q
xXER

)

L (e, [log(i/h) | log(1/h)
,S]p\/W(th + + )

nhd nziiuhd
and
B v VO - log(1/h)  log(1/h
sup — :h*h’\ sup ,/nhd(thrlJr Og( L/i )Jr Ogi/ ))
NG | INCTRT nht g
which completes the proof. O
SA-7.5 Proof of Lemma SA-5
Define
Xi — X /"L'Ew)( ) w
Xex = Entp (T2 ) Kn(Xi = 00(X; € a)u(Xix)|, (%) = ua(€) - — %),

0<|w|<p
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Since p¢ is (p + 1)-times continuously differentiable, there exists ax x; + € RP*! such that

2 1 " Xz — X Xz —x\ I 2
Ix:xll” = Hﬁ ZrP<T>K}z(Xz’ -x)1(X; € ﬂt)rp<T> (OTvaI,Xi,t)TH 2P+l

< &

where Sup, ¢ g maxie (0,1} Maxi<i<n || 0 x; ¢

o (2~ 9n05 o, (52) ) e s

e,

| < 1. Since % = o(1), the same argument as the proof of

Lemma SA-2 shows

rp(Xih_ X)Kh(Xi —X)L(X; € gft)rp(xi - X)Tm <p 1.

B i

It then follows from Lemma SA-2 that
~(v v 1t —|v
sup [E[" ()X] = i (0)] = sup [e HIT x| S 07771
S xXe

Now also assume that h = o(1). Then, for all x € B and £ € X,

v A%
1el€x) — Mo < ML sup 9% () - ()] = My,

YV lu—u’fI<h

1 (Kn(§ —x) #0)

where 1y (§;x) = b’—,l fol(1715)|"|*18‘,pt(x+t(57x))dt. By Assumption SA-1(iii), Yy, is uniformly continuous
on the compact set 2. This implies that when h = o(1), M,, = o(1). Letting

> X —x |V| v v

Rex = Entp (T ) En(Xi —x00(Xs € a)( Y 0 m(x)(Xs —x)")]

[v]=p+1

we conclude that

E, {rp<¥)Kh(Xi — X)L(X; € of,) |v|§+1 % Xi = x|")] || = oprr ),

sup [0 — Fooe| < M s |
XERB xXERB

where the last equality employs the same arguments as in the proof of Lemma SA-2. Hence,

_ T H_lf‘_l T H—1f—1~
= sug €1ru txXtx — €14v t,x Xt,x
XEY

= op(RPT1=IVI),

sup E[i (x)[X] — u™) (x) — hr+1 =M BX)

Using Lemma SA-2 and the maximal inequality as in the proof of Lemma SA-2, we conclude that

~(u v log(1/h)
BW g0 < .
%y ap [P = B S\
Since maxye 0,1} SUPxe g |B§';)| < 1, it follows that max;e(o,1} SUPyxeg |§§';)| <pl. O
SA-7.6 Proof of Theorem SA-1
The results follow from Lemma SA-5 and Lemma SA-3. O
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SA-7.7 Proof of Theorem SA-2

For the conditional bias, by Lemma SA-5

sup |]E[7”( (x) — 7 |X] (hpF1-IvIB())2 |

XERB

< sup ‘E[?(”)(x) - T(V)(XMX} - th_‘"'B,(:’)’ - sup ‘E[?(”)(X) - T(V)(X)’X] + ppri-ivip@)
xXERB XERB

= op(RPT1=IVIY,

Since supy¢ g \Bt(l;) — Bg;)| Sey/ % from Lemma SA-5,

sup |]E[?(V)( ) — 7 |X] hp+1*|V‘B)((y))2| — op(nPHI Iy,
x€B

For the conditional variance, by Lemma SA-4,

sup ’V[ )‘X] — (nhd+2"’|)_1Vx(”)‘ = 0p((nhd+2|”‘)_1).
XERB

The pointwise MSE expansion follows directly. For the IMSE expansion, notice that

| IMSE,, - / (BN 4 (b2 Y0 () (x)|
/|w )|dH4 (x) - sup | MSE, (x) — (h* T~ MIB))? — (npd 21y )|
XER
= op(R?PT272W 4 (ppd 2V =1

which completes the proof.

SA-7.8 Proof of Theorem SA-3
We have T(V)(X) = Y1 | Z; with
X.

Zi: Z nil(Qxl,lx) 1/2e1+uH71Ft7,;rp( 2h_x>]:(h(>(i7X)]]'(}(iG'gyt)uia
te{0,1}

where E[Z;] = 0 and V[Z;] = n~!. By the Berry-Essen Theorem,

sup [P(T"(x) < w) — o(u)| < B, Y B2
u€eR i—1

where B,, = >, V[Z;] = 1. Moreover,

n n
_ D)y — e X; —x
;EHZilS]:n Q) wgﬂa[\ 3 el H r( = )Kh(Xi—x)]l(Xiedt)ui

te{0,1}
_ Xz — X 3
o)) 3/2ZEH 3 e1T+VH—11-\t7)1(rp( - )Kh (X, =) 1(X; € )| |
te{0,1}
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Xi — 2
< n2hvi=d(Q®)) B/QEH > el H'Ir ( - X) Ky, (Xi—x)]l(Xie.szit)H
te{0,1}

< n_lh_lul_d(Q)((u))()_l/Q
< (nh?)=12,

where the second line uses Assumption SA-1(v), the third line uses

X — -
> eLVlet;rp( - X> K (X; —x)1(X; € ofy)| < h~vI=d
te{0,1}

and the fourth line uses the definition of Q,(:'})(
Finally, although Lemma SA-2 through Lemma SA-4 provide convergence results uniformly in x, for
pointwise results with fix x € %, we can replace the class of functions in those proofs by one containing a

singleton (corresponding to the evaluation point x). Thus, we obtain the following result:

~®)

T (x) = T (x)| <o WP Vahd +1/Vnhd + 1/ (n75 h), (SA-4)

provided that h?t1v/nhd — 0 and n=+ h¢ — 0.
The final results follow by weak convergence to a Gaussian distribution, and properties of the distribution

function. O

SA-7.9 Proof of Theorem SA-4
For all x € &, we have T (x) = T (x) + G (x) + G (x), where
G () = (B[ ()[X] = ) () ) (@) /2,
and
GY(x) = el H! [(f‘;iQ17x I xQo ) Q)% — (T75Qux — ToxQox) ()~ %]

By Lemma SA-5 and Lemma SA-4,

sugj ‘Ggy)(x)‘ <p RPFL Pl (ppd T2V /2 < pptly/ppd,
xE

By Lemma SA-2, Lemma SA-3 and Lemma SA-4,

~1 _ N log(1/h log(1/h
sup [ef BT 1 — Dt Qe (00272 5o v/Iog(1/m) (/2800 Lo/
XERB Tlh n2+v hd

and

sup [}, B T 0 Qe [(Q) 7172 = (22) 72|

XERB

gp h—\u| . log(l/h) + IOglgr{/h) . /nhd+2" log(l/h’) + IOgﬁ/h’) + hp+1
nhd naztv hd nhd n2+v ha
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3/2
_ loa(1/h) _ (og(1/m)*?
~ nhd nzv hd

The result now follows from combining the bounds above. O

SA-7.10 Proof of Theorem SA-5

We verify the high-level conditions of Theorem SA-11. We will employ the following technical lemma.

Lemma SA-8 (VC Class to VC2 Class). Assume & is a VC class on a measure space (X, B): there exists
an envelope function F and positive constants ¢(F),d(F) such that for all e € (0,1),

sgpN(Ff”, g1 e l1Fllg,) < e(F)e ),

where the supremum is taken over all finite discrete measures. Then, F is also VC2 class: for alle € (0,1),

sgpN(f?, g2 llFllg2) < e(F)(e?/2)~ 4,

where the supremum is taken over all finite discrete measures.

Proof of Lemma SA-8. Let @ be a finite discrete probability measure. Let f,g € . Then, [|f—g|*dQ <
2 [|f — gl|F|dQ. Define another probability measure Q(cy,) = F(ck)Q(ck)/ | Fllg., on the support of @,
denoted by {c1,...,¢k,...}. Then,

[15-gPiQ <21Flgy [ 17 - 6la@ <20l 17 - sl

Hence, if we take an €2 /2-net in (F, [llg.1) with cardinality no greater than c(F)e=47) then for any f € F,
there exists a g € # such that ||f — g5, < e2/2 | F||.1. and hence

2 2
If = gllg.2 < 2¢%/2[1Fllgu 1Fllg, < I1Flg.

which gives the result. O
Without loss of generality, we assume & = [0,1]%, and @g, = Px is a valid surrogate measure for Px with
respect to F, and ¢z, = Id is a valid normalizing transformation (as in ). This implies the constants c; and
co from Theorem SA-11 are all 1.
Consider first the class of functions % = {Ji/t(")(g x):x € B}, for t € {0,1}.

Envelope Function. By Lemma SA-2 and Lemma SA-4 and the fact that Supp(K) is compact,

(S 1 -1 =1 (v)y—1 —d/2
sup sup K, X 5 sup T x + ||T x sup Qx %) 2 S, h .
c 563’| t (§ )’ fhd+u c (H 1, || || 0, H) c |( s ) ‘

—d/2

Hence, there exists a constant C; > 0 such that Mg, = C1h is a constant envelope function.

Ly Bound. We have Eg, = Supyc g E[l4") (X x)[] < h4/2.
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Uniform Variation. Case 1: K is Lipschitz. By Assumption SA-1(iv) and Assumption SA-2,

W) ey _ @) e,
L sup sup €0 — A

< h_d/Q_l.
XEB E,EEX 1€ — &]loo ~

Each entry of I'; x and X, x are of the form f(ngx)“J"’Kh(f —x)1(¢ € o) f(£)dE and f(%)“+th(§ -
x)0(£)?1(¢ € of,)dE for some multi-index u and v, respectively. Hence, by Assumption SA-2, each entry of
I'; x and X, x are h~'-Lipschitz in x. It follows that there exists a constant Cy such that for all x,x’ € %,

ITix = T

< IP7llITex = FexllITy 0|l < Coh™t flx — x|
Also, by definition of € x and Assumption SA-2(iv), there exists C3 such that for all x,x’ € I,

e

] < Ca(nhTHEEN) T x — x|,

and

174 v — 1 v — 174 v 1 —
Q)72 = (@) 7] < 5 b ()T — | < 50T (A )2 x — X oo

inf
ze€X
It then follows that we have a uniform Lipschitz property with respect to the point of evaluation:

PALGEEFAUGEY

5 h—d/Q—l.

lg

, = sup sup

EEX x,x'ER ||X_x/||oo
Let x € %. Then, Jf/t(u)(qx) is supported on x + c[—h, h]¢. Then,
Vg, < m(c[-h, h]*)Lg, < AV

Case 2: K = 1(- € [-1,1]%). Consider

u—X

Y (w;x) = n*1/2(Qxﬁx)*l/ZeLuH*F;;rp(T)h*d, ueZ, te{o1}.
Then, # ™) (u;x) = 4 @ (u;x)1(u—x € [-1,1]%) for all u € X and x € B, and we set F = { A V) (:;x) :
x € B}, t € {0,1}. Then, the argument above implies that TV < m (c[-h,h?) Ly, < Y271 Next, set
L ={1((-—x)/h € [-1,1]¢) : x € B}. Then, using a product rule, we have

Vg, < TVg My + Mz TVg S AY271 14 h=4/2pd=t < pd/271,

VC-type Class. Case 1: K is Lipschitz. We apply Cattaneo et al. [2024, Lemma 7]. To make the notation

consistent, define

1 _
fX() = 7eir+uH71Ft 1r10 () K ()v X € %a
nse

s

~

%

and # = {gx (5%) : x € B}. Notice that fux(5X) = h? n;(") eL_VH’ll"*lrp(?)Kh( — x). Then, the

following conditions in Cattaneo et al. [2024, Lemma 7] hold (for z,2’,2" € Z):
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(i) boundedness: sup, sup, |fz(z')| < c,

(ii) compact support: supp(fa(-)) C [~c,c]?,
(iii) Lipschitz continuity: sup, |fz(z') — fa(z")| < c|z’ — 2"| and sup, | fz (2) — fzr(2)| < ch ™|z’ — 2"

and therefore there exists a constant ¢’ only depending on ¢ and d that for any 0 < e < 1,

SgpN(% g 2e+ 1) le) < ee™@72 41,

where the supremum is taken over all finite discrete measures on 2 = [0, 1]. Tt then follows from Lemma SA-

8 that with the constant envelope function Mg, = h=%2 for any 0 <e <1,

sup N (F, [l g.o» (2c+ 1) Mg, ) < /227274 41,
o :

where the supremum is taken over all finite discrete measures.
Case 2: Suppose K = 1(- € [~1,1]%). Recall % and . defined in the analysis of uniform variation. The

same argument as before shows

sgpN(f’/'lt, [l (2c+ l)d'HaMgt) < /a2 e € (0,1],

where the supremum is taken over all finite discrete measures, and % = h~%2. By van der Vaart and
Wellner [1996, Example 2.6.1], the class . = {1((- —x)/h € [-1,1]9) : x € B} has VC dimension no greater
than 2d, and by van der Vaart and Wellner [1996, Theorem 2.6.4],

sup N(Z, I'llg2-€) < 2d(4e)*de =44, 0<e<l,
s :

where the supremum is taken over all finite discrete measures on 2 = [0, 1]¢. Putting together, we have

Sup N(F1, ||l g2 eCiMz,) < Coe™,

where C7, Cs are constants only depending on d, and the supremum is taken over all finite discrete measures
on & = [0,1]%.

Consider next the class of functions & = {gx : x € %B}, where gx(u) = 1(u € dl)l/l('/)(u; x) —1(u €
Jzio)%(")(u; x). We have immediately that Mgy < h~%2, Ex < h%/?, and

sup N(Z, ||l g5, e(2¢ + 1) 1g) < 2¢/e747 42,
Q )

where the supremum is taken over all finite discrete measures.

Total Variation. Observe that 1(u € dt)%(u)(u;x) # 0 implies By x =u e{y € & : (y —x)/h €
Supp(K)}, and 1(u € o)™ (u;x) = L(u € E, )" (u;x), for all u € Z. By the assumption that the
De Giorgi perimeter of Ej  satisfies Z(E;x) < Ch?~! and using TVigry < Mgy TV sy + My TV gy for any
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two functions g and f, we have

d/2— 1
TV = sup TV, < sup Y T, () < sup D TV gy MR TV, S Y
*€% 1ei0,1} *X€% 1eq0,1}

We completed the verification of all the high-level sufficient conditions of Theorem SA-11, which immedi-
ately give the result. O

SA-7.11 Proof of Theorem SA-6

The proof is divided in three technical lemmas.

Lemma SA-9 (KS Distance Between T®)

for any multi-indez |v| < p,

and Z™)). Suppose the conditions of Theorem SA-5 hold. Then,

T %'vv2 1 1/2
sup ]P’( sup |T(y) (x)| < u) - IP’( sup }Z(”) (x)| < u)’ < ((1Ogn)§ (—) g log(n) 1d) .
ueR ! \xe® xERB n nvFIh

Proof of Lemma SA-9. Let R,, = (log n)%(—)ﬁ w2 +log(n) ﬁ, and a,, positive sequence to be
determined below. For any u > 0,
(sup |T | < u)
XER

< P( sup |Z(”) (x)| < sup |T(y) (x) — Z(”)(x)| + u)

(sup|Z <u+an)+IF’(sup]Z(” x) — T(V)(x)| >an)

xEB

P(21€119)3|Z u) —|—4an(Eb16119)3’Z(” )” + 1) +P(i16119)3|Z(” T(V)(X)| > an)
P(iggw u)+4an(E{igg|Z(”)(x)|} +1>+C;):n,

where in the fourth line we have used the Gaussian Anti-concentration Inequality in [Chernozhukov et al.,
2014a, Theorem 2.1], and in the last line we have used the tail bound in Theorem SA-5. Similarly, for any

u > 0, we have the lower bound

IP’( sup |T(V) (x)| < u)

XER
> ]P’( sup |Z(”)(x)| < u— sup }T(V)(x) — Z(V)(X)D
XER XERB
> P(zgg ‘Z )| <u-— an) —]P’( sup ’Z(”)(x) —T(V)(X)‘ > an)
#2001 ) - 201 +1) 2 (s 20T ] )

> P(igg 12 (x)| < u) — da, (E[igg |Z(”)(x)|] N 1) B C;:n'

Notice that Z*)(x),x € & is a mean-zero Gaussian process satisfying

E[(2%)(x) ~ 2)(v))*]* = E[( (Xi,%) - # (Xi,¥))*0(X0)?] * < C'hax — ¥]|oc.
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where C’ is a constant and [, o < h~!, and hence

sggE[(Z(”)(x) — Z(")(y))z]% = sggE[%(Xi,x)2a2(Xi)] < 1.

Then, by Corollary 2.2.8 in van der Vaart and Wellner [1996], we have E[ sup,cg |Z(”) (x)|] £ 1. Choosing
an = /Ry, the result now follows. O

Lemma SA-10 (KS Distance Between T(U) and T(V)). Suppose the conditions in Theorem SA-5 hold. Then,

for any multi-indez |v| < p,

sip[P (s 17001 < ) P sup [T60] < )| =)

njw

Proof of Lemma SA-10. Let R,, = (logn)? (= )%'v‘vﬂ +log(n), /—= - and

anzo( log(l/h)( n—1h=dlog(1/h) + g(ul/h))mpﬂx/w).

Then, sup,cg |T(V)(x) — rI’(x)| = op(an). Hence, for any u > 0,

P(sup ’T ‘ < u)
XERB

< P(sup ‘T( “) | < u—l—an) +P(sup ‘T( “) —T‘(x)’ > an)

XERB XERB
(sup|Z <u+an>+\/7+
xXER
P(igggw u>+4an<E[ig§}Z(”)(x)|} +1)+\/9Tn+0(1)
P(sup|T( ) u>+4an(E[sup|Z(”)(x)|} +1)+2\/9%7n+0(1)
XERB XERB

where the third line uses Lemma SA-9 and sup,cg ’T(V) (x) — ’T(x)‘ = op(ay), the fourth line uses [Cher-

nozhukov et al., 2014a, Theorem 2.1], and the last line uses Lemma SA-9 again. Similarly,

]P’( sup |T(x)| < u)

XERB
> IP( sup |T(V)(x)’ <u-— an) — IP’( sup |T(V)(x) — T(x)| > an)
XERB
(sup‘Z(V) | <u—an) — VRn +0(1)
XERB
]P’(bup|Z Su) —4an(E[bup}Z(” |] —|—1) — VR, +0o(1)
XERB XER
P(sup‘T( ) Su) —4a, (E[sup‘Z ” +1) — 2R, +0o(1)
XERB XERB
From the proof of Lemma SA-9, E [sup,c4 |Z(")(X)H < 1. Hence, the result follows. O

Lemma SA-11 (KS Distance Between Z*) and 2(”)). Suppose the conditions for Theorem SA-5 hold.
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Then, for any multi-index |v| < p,

logn logn —|—hp+1>1/2_

sup ]P’( sup ’Z(”)(x)‘ < u) — P(igg IZ(V)(X)‘ < u‘W)‘ <p log(n)( ot T

uclR XERB

Proof of Lemma SA-11. First, using Lemma SA-4, we provide an upper bound between covariance func-
tions of the feasible Gaussian process and the infeasible Gaussian process. Letting Ik y = Qx y/+1/Ox x Ly

and ﬁx7y = ﬁx,y/ \/ Qx,xﬁya

. Dy — Qs Ox
sup ’Hx,y — Hx’y‘ = sup XY DANE — ’yA (
x,yeZ x,ye& \/QX’XQy \/Qx ny

=)

XUy

»

From Lemma SA-4 and the fact that |z — \/y| < (z Ay) "2z —y|/2 for 7,y > 0,

S a2 1/2 ~
|(Qx,ny) / - (Qx,ny) / | < Spr,yez ‘Qx,ny - Qx,xg2y| < p+1 10g’l’L lOg?’L
sup 172 ~ G 35 8 - Se b7 hd 5t d
x,yex (Qx,xy) infy y Qx xQy Ainfy y Oy Oy n nz+vh

and
sup |Qx,y — Qx,y’ <o P4 logn lovgn .
X, yeX A/ Qx’ny nhd nIrs hd

Therefore, letting R,, = 12% + ?%g”hd, it follows that sup, ycq [Tk y — ﬁx,y\ <p h?*1 + R,,. Then, we

n2+v ’

bound the KS distance between the maximum of Z,, and Z®W ona 0n-net of X', denoted by X5, : for all x € AB,
there exists z € 2, such that ||x — z||s < &,. Since & is compact, we can assume M := Card (25,) < 6,
Denote Z» and 2?1" to the process Z, and Z®) restricted on Zs,,, respectively. Then, by [Chernozhuokov
et al., 2022, Theorem 2.1],

sup [P(Z%r <y) — P(Z < y[W)| S log(M) sup |They — They|? Sp log(M)(R, + hP*1)3,

yERM x,yeX

and hence

o < 1) —P(|Z0"

Slelg |IP’(HZi o < :E|W)| < Slelﬁ ’P(f:vl < Zfl" <zl)—P(—21 < Z‘EL < :E1|W)|

<p log(M)(R,, + hPT1)7 = Ry,

Finally, we bound the KS distance on the whole & with the help of a sequence a,, > 0 to be determined.
Let

s, (a) =P(  swp_ 2000 - 20 ()| > an)

=¥ lloo <dn

and

\T/(;n (an) = H”( sup ’2(”)()() — /Z\(")(y)‘ > ay
%=y lloo <6n

W).

31



Then, for all ¢ > 0,

(sup ‘Z(" (x)| < t)
XERB

<]P’( sup ‘Z(") )’St+an)+\1’6n<an)

xe‘%s”
<P( sup |ZV(x)| < t+an|W) + Wy, (an) + Ry
xe‘%s”
]P’( sup ’Z(V) < t+an, W) + W, (a,) + \T/(;“ (an) +Rum
XERB
]P’( sup |Z(”) !W) + 4an, (E[sup |2(") (X)"W} + 1) + Wy, (an) + Vs, (an) + R
XER XER

Similarly, for all ¢ > 0,

(sup‘Z(") ‘ <t) >P(sup‘Z ") ’ St‘W)—4an( [sup‘Z(") HW} +1)
xXERB xXERB XER

— U5 (an) — Vs, (an) — R

Since Ry depends on 6, through log M < log(6;, %), by choosing d,, = n~* for large enough s, the term R,
will dominate the terms U5 (a,) and \T/gn (an). More precisely, for any 4,

sup E[(E(”)(x) — Z(”)(y))2‘W}
Ix=ylloo <8
" oyless (Bafly) (#Y ;g?]l(Xi “ )
e (25 ) -t (S ()
Ol () 1K et
N )]

where the last line uses Lemma SA-4, Lemma SA-2, and the almost sure bound on the Lipschitz constant

from the proof of Theorem SA-5, for some constant C' > 0. Similarly, for any § > 0,

sup E{(Z(”)(x) AL (y))z} = sup E[(%(X“x) - %(X“y))2 2] < C'h™25%,

lx=ylleo <6 lx=ylleo <6

Then, by [van der Vaart and Wellner, 1996, Corollary 2.2.5],

Ch~4/2-15
AI/ AI/ n 1 _ B
E{ i |Z( ) - 26 )(y)”W} SIP’/0 dlog (eshd/2+1>d85 Viognh™=4/>"1,

[[x=¥lloo <dn

Ch™"6n
IE[ sup |Z(")( ) — ZW(y / Hdlog d<€< Vd1ognh™16,.
=¥ lloo <dn
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In addition, using the fact that E[sup,eg |2(”) (x)||W] < 1, and choosing a,, < (y/Tognh~%2=1§,)1/2 and

0, < n~* for some large constant s > 0, we conclude that

day, (]E[)scgg |2(”)(x)}‘W} + 1) + Ws, (an) + Vs, (an) + Ras

<o (VIognh™*2715,)"% 4+ dlog(671) (an + h7)/? < dlog(n)(a, + kT2,

and putting all the intermediate results together, the lemma follows.

O

The proof of Theorem SA-6 now follows directly from Lemma SA-9, Lemma SA-10 and Lemma SA-11.

Furthermore, by definition of i(;/) (x),

P[,u(u)(x) E'I%a'/)(x), for all x € %’} = ]P’{ sup "/I\‘(")(x)| < 404:|

XERB

=P[sup |Z¥)(x)| < ga] +o(1)
xXER

= E[p[sup 1260 <

WH +o(1)
=1—a+o(1),

which completes the proof of the theorem.

SA-7.12 Proof of Lemma SA-6

Follows from Lemma SA-5 and the assumption that [, [w(x)|d$H%*(x) < oo.

SA-7.13 Proof of Lemma SA-7

Since V[7ipare|X] = V[, fo(b)w(b)dH?~ 1 (b)|X] + V[ [, fi1(b)w(b)d$H?*(b)|X], it is enough to consider

only one treatment assignment group ¢ € {0,1}. In addition,

v /@ fi(b)u(bds' (b)[x] = /{93 /@ Cov [ (b1), fie(b2) | X] w(by )uw(by)dsy" (b ) a5~ (by)

and

Qt,WBATE:/ / Qt,bl,brzw(bl)w(bﬂdﬁd_l(bl)dﬁd_l(b2)~
B JRB

Proceeding as in the proof of Lemma SA-4, we have

o log(1/1)"/2
C b bo)|X] — 02 <p ————F—
bl,sll)lgpe% | OV[/I“t( 1)3 :U't( 2)| ] t,b1,bo ’ ~P (nhd)3/2

Since K is supported on a compact set, let R € (0,00) denote the diameter of the support, and define
the “effective domain” &(h) = {(x,y) € B x % : ||x —y| < hR}. Since & is (d — 1) dimensional, we have
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vq4(&(h)) < hiL, where vy is the product measure $?~! x §4~1. Therefore,
7] [ fnboinw)x] - o

= ’/ / (Cov[ﬁt(bl),ﬁt(b2)|X] 7Qt,bl,bQ)w(bl)w<b2)d~6dil(bl)d~6dil(bQ)

< sup |(Cov f(by), it (ba)|X] — th1,bz|// ((by,bo) E%(h))w(bl)w(bg)dj’)d_l(bl)dﬁd_l(b2)

bi,b2e%
log(1/h)*/? _
Se h” IW = op((nh)™"),
because % = 0(1). This proves the first claim. Next,

Qt,WBATE:/ / Qt,bl,b2w(b1)w(b2)dﬁd_l(bl)dﬁd_l(bﬁ
< s [Qupn / / ((by, by) € E(1))w(by )uw(by)ds " (by)dsy*" (by)
1,bo€ER

< (nh) " tva(E(h) S

which verifies the upper bound. For the lower bound, let by € & and by = by + hd for some vector d such
that supycq Kpn(x —b1)Kp(x —bg) > 0. For multi-indexes u and v, and using change of variables, a typical
element of 3, p,, p, is

B (R ) (R (S (BB,

- / §%(s — 8)VK () K (s + 8)02(by + hs) f(s)ds > 1,
bi+hds

which implies that |Q¢ b, b,| = (nh?)~! for (by, bs) on a set & (k) such that v4(&’(h)) = h¢=1. This verifies
lower bound in the second claim.

The third and final claim of the lemma follows from Lemma SA-4 and the same analysis as above.

SA-7.14 Proof of Theorem SA-7

Follows from Lemma SA-6 and Lemma SA-7. O

SA-7.15 Proof of Theorem SA-8

Since TWBATE — TWBATE — (/Jfl,WBATE - ,uLWBATE) - (NO,WBATE - NO,WBATE)7 it is enough to start with Only one treatment

assignment group ¢ € {0,1}. Furthermore,

ﬁt,WBATE*Mt,WBATE = /@(ﬁl(b) *ul(b)) ( ) 5’Jd 1(b)

:/@eirgéqt,bw( b)d5* ™ (b) + /@ — T, 0)Qupw(b)dH? (b) + Op(h"*1)

using Lemma SA-5 to bound the approximation error.
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For the second integral, let

s s :En[rp(xi;xl)rp(xi;m) B (X = x1) Kn(X; = %2)of (X0 1(X; € o),

and since ft,bhlm =0 if by and by are farther away form each other than the diameter of Supp(K),

Bl ([ el@s-T tb>Qt,bw<b>dﬁd—1<b>)2 x|

a1 _ e ~—1 _ _ _
/ / el (Frr, = Tl ) ()18, 1y (Fr, — T Jerw(by Ju(by) s (by)dsy'— (by),

< sup [Brp ~ i) sup [Sin,bl sup [uw(b )| (nh) " m(& (h))
be% B

1,b2€

<p (nh)~",

and hence [, eI(IA“;ll) —T;1)Qipw(b)dH ! (b) = op((nh) ™).
Next, using Lemma SA-7 and the previous results,

Tupare — Tuate = (ﬁﬁaﬂé - Qﬁgﬁ%) / eIF;éQt,bded_l(b) + op(1) = op(1),
B
where
a _0-1/2 Tp—1 d—1
Tusate = Qypare | € 1-‘t,th,bdﬁ (b).
B
Finally, we apply the Berry-Esseen lemma to the statistic T,, = S, Z;, where
_ ,—10—1/2 Tp-1 Xi—b d—1
Zi=n" Qe | € T ptp — Kn(X; — b)L(X; € o1)u;w(b)dH*™ " (b),
B

which satisfies E[Z;] = 0. The definition of Qugare implies that Y. | V[Z;] = Q‘E;TEQWBATEQWBAT% = 1. Hence,

it remains to bound

Let R denote the diameter of the (compact) support of K, and define &(h) = {(b1,ba,b3) € %> :
bi —b,|| < R,j=1,2,3}. Since & is d — 1 dimensional, m(&(h)) < h?¢~2. Then,

]
d—1 d—1 d—1
S IE|:-/])16%j /1326@ /bse‘%, |G(b1,bg,b3)|w(b1)w(b2)w(b3)dﬁ (bl)dfj (bQ)df) (bg)

Sm(&(h))  sup  E[G(by, by, bs)l],
bi,b2,b3e%

- — —b
ZEHZlP)] = n_3QWB:i\{f% H / Ft bI'p h )Kh(X b)]]_(Xl c dt)u@w(b)df)d_l(b)
—

o] [ i (552 i 000 € s o

where G(bl,bg,bg) = g(Xi,ui,bl)g(Xi,ui,bg)g(Xi,ui,bg) with

X;—b
9(Xi,u;,b) = e/ T, brp(T)Kh< —b)1(X; € Hy)u;
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Proceeding as in the proof of Lemma SA-2 and Lemma SA-7, it can be shown that

sup  E[|G(by, by, bs)|] <2

bi,b2,b3eRB
provided that % = 0(1). Therefore, together with the rate of Qypare from Lemma SA-7, we have
S E[Z3)] < (nh)7Y/2, and the result follows. O

SA-7.16 Proof of Theorem SA-9

Follows by Theorem SA-1 after noting that |Tigate — Tieate| < Supyeg |T(x) — 7(x)]. O

SA-7.17 Proof of Theorem SA-10

Consider the event E = {Supbe@ % < qa}. Theorem SA-6 implies that P(F) =1 — a + o(1). On
b,b

the event F, we also have

~

7(b) — 2ay/t < 7(b) <7(b) + ¢a/s,  Vbe,

which implies

sup 7(b) — {}aﬁll)/i < sup 7(b) < sup 7(b) + {}aﬁyi.
beRB ’ be% beRB ’
The stated result then follows. O

SA-7.18 Proof of Theorem SA-11

We will use a truncation argument. Let k,, > 0 be the level of truncation. For each r € &, define

Fly) =r(yL(ly| < kn), YyER,

and define the class # = {F : r € R}. For an overview of our argument, suppose Z* is some mean-zero
Gaussian process indexed by & x ZU & x R, whose existence will be shown below, then we can decompose
by:

Ro(g,7) — Z(g,7) = [Ru(g,7) — ZF(9,7)] + [Ru(g.7) — Ralg,7)] + [ZE(g,7) — ZF(g,7)].

Part 1: Strong approximation for truncated residual empirical process.

Observe that Mg o < Ky and PTV; o < Kn, and Z is a VC-type class with envelope M@,? = Mgy 1(|-| < Kkp)
over % with constants cg 9 and dg . Then, Cattaneo and Yu [2025, Theorem 2] with v = ,, and o = 0
for the class of functions € and % implies on a possibly enlarged probability space, there exists a sequence

of mean-zero Gaussian processes (ZX(g,7) : (g,r) € € x R) with almost sure continuous trajectories on
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(€ x R, pp) such that B[R, (g1,71)Rn(g2,72)] = E[ZF(g1,71)Z (g2, 2)] for all (g1,71), (g2,72) € € X R, and

E[”Rn(ga 7;) - ZE(Q,F)”?X@}

dyd+1TydE, ) 3are ¢ ¢ d dy_1_
< Chvky <\/gmin { (citt %) (cf ey MgTV2EgL?) T }((d + k) log(cn))®/? + M\WM?>
n

nl/(2d+2) ’ nl/(d+2)

3 d + k) log(cn
= Cyvin | Vdr,((d+k) log(cn))g + %Mg ,
Vn
where C} is some positive universal constant. Notice that we use TV = max{TVg, TVg« %, 0, } as an upper
bound for max{TVg, TVgyxy e, }, and similarly L as an upper bound for max{Lg, Lyxv; a, }-
In the special case that & = {r.} is a singleton, take 3; = r.(v;)1(Jyi] < Kn)/(VEn), then we have

Elexp(|7:])] < 2. Also §; is supported on % = [—1,1]. Moreover,

—Ru(9.7) = 3 S o(k)G—Elal), g€
i=1

VRn
In particular, the right hand side can be viewed as a residual empirical process based on sample (x;,7;), 1 <
i < n, indexed by & x {Id}, where Id : R — R is the identity function. Then we can apply Cattaneo and

Yu [2025, Theorem 2] with v =1 and « = 0 on the latter empirical process to get the upper bound with TV
and L replaced by TVgine and Lging.

Part 2: Truncation error for the empirical process — |R,,(g9,7) — Rn(g9,7)|loxx

Consider the class of differences due to truncation, that is, AZ = {r — 7 : r € #Z}. Our assumptions imply
Z x AR is VC-type in the sense that for all 0 < e < 1,

SUp N(Y X AR, [ llg 2. Me(Mary = Mg 5/ )lla2) < cgca,y (2/4) 70T,

where sup is over all finite discrete measure on R4*!, and M () = Mgy (y)L(|ly| < k,). We can check
that Mg (Mg, — Mg 4) is an envelope function for & x AZ, since all functions in AR are evaluated to zero
on [—kn, fin]. Denote X = (x;)1<i<n,

3 1

" SMgnT,

3 2
[ max M5 (Mo (5) = My 5 (00 X] " S MoE[( max Mgy () |X]

1 v _2 v
sup  Elg(oe)?r(u)? 8] > wYE S sup B [g()Elr() 7 el B > o)
(9,7)EGXR (g,1)EGXR

S VMgEgky,.

By Jensen’s inequality, we also have

2 N M- Vx.1)2 < P
E | max 15 (Mg (v:) — Mg g (o))’ [X] " S MenFs,
sup  Elg(x;)?E[r(yi) — 7(yi)[xi]%)? < \/MgEgrn”,

(9,7)EEXR

EM (Mo, (i) — Mg (1:)°]"? S Mgry "2,
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Denote A = (cgcg) e /4 and D = 2dg + 2dg, Chernozhukov et al. [2014b, Corollary 5.1] gives

E[[|[Rn(g,7) — Ru(g7)lgxa] S E |sup sup % Zg(xz-)(h(yi) — E[h(y:)|x:])

gEC hEAR

DM
< \/DMgEglinvlog A\/Mg/Eg f/ri log A\/Mg/Eg

_ DlOg A\/Mg/E;’g
</ Dlog(A\/Mg /Eg ) MgEgk, /% +
\/ og( v/Eg)VMgEgh, \/nzT

Part 3: Truncation error for the Gaussian process — || Z%(g,7) — ZE(g,7)||gx%

Our assumptions imply € x ZU¥ x & is VC-type w.r.p envelope function 2MgMg o in the sense that for all
0<e<l,

sup NEXRUEG X R, |llg2,2lMeMayllgz2) < cseale®/4)7%
where sup is over all finite discrete measure on R4*!. Hence € x U ¥ x & is pre-Gaussian, and on some
probability space, there exists a mean-zero Gaussian process Z* indexed by & = & x RUZ x R with the

same covariance structure as R,,, and has almost sure continuous path w.r.p the metric p, given by

Nl

p((91,71), (92,72)) = E[(Zf(gl, 1) — 25(927702))2] = E[(Rn(glvrl) - Rn(9277ﬂ2))2]%7 (91,71), (92,72) € F.

Recall the definition of & x AZ in Part 2. Then, we have shown previously that

o= sup p(f,f)S\/Ma

fEEXAR

Our assumptions imply for all 0 < e < 1,
N(? XRUZG X @,p,p(QEMgMg)?, 2€||M3Mg’?)1/2) < CgC@(€2/4)_dy_d‘%

Denote A = (c?c@)z%i?d@ /4 and D = 2dg + 2dg. Then, by van der Vaart and Wellner [1996, Corollary
2.2.8], choose any (gg,r9) € € X R, we have

_ _ ~ _ g+,
E||ZF(g,r) —Zf‘(g,r)HgX@] SE[|Z}g0,m0) — Z (90, 70)| / \/log Czcgz ) ’ 7')d

< \/D log(A\/Mg /Eg)VMgEgk,, "/

S \/(dg + d@’?) IOg(CgC@’gk’N‘)\/MgEglﬁgv/g.

Since (Z*(g,7) : g € €,r € R) has the same distribution as (ZE(g,r) : g € €,7 € R), we know from
Vorob’ev-Berkes-Philipp theorem [Dudley, 2014, Theorem 1.31] that Z can be constructed on the same
probability space as (x;,¥i)1<i<n and ZE, such that Z and ZF coincide on & x %. By an abuse of notation,

call Zf now fo, the outputted Gaussian process.
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Part 4: Putting Together

If follows from the definition of % and the previous three parts that if we choose k,, such that
rpky X \/MgEgli;v/2,

then the approximation error can be bounded by

where d = dg +dg.% +k, and ¢ = cgcg yk. =

References

Matias D. Cattaneo and Ruiqi (Rae) Yu. Strong approximations for empirical processes indexed by lipschitz
functions. Annals of Statistics, 53(3):1203-1229, 2025.

Matias D. Cattaneo, Rajita Chandak, Michael Jansson, and Xinwei Ma. Boundary adaptive local polynomial
conditional density estimators. Bernoulli, 30(4):3193-3223, 2024.

Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Anti-concentration and honest, adaptive confi-
dence bands. Annals of Statistics, 42(5):1787-1818, 2014a.

Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Gaussian approximation of suprema of empirical
processes. Annals of Statistics, 42(4):1564-1597, 2014b.

Victor Chernozhuokov, Denis Chetverikov, Kengo Kato, and Yuta Koike. Improved central limit theorem
and bootstrap approximations in high dimensions. Annals of Statistics, 50(5):2562—2586, 2022.

Richard M Dudley. Uniform central limit theorems, volume 142. Cambridge university press, 2014.
Herbert Federer. Geometric measure theory. Springer, 2014.
G.B. Folland. Advanced Calculus. Featured Titles for Advanced Calculus Series. Prentice Hall, 2002.

Evarist Giné and Richard Nickl. Mathematical Foundations of Infinite-dimensional Statistical Models. Cam-
bridge University Press, New York, 2016.

Leon Simon et al. Lectures on geometric measure theory. Centre for Mathematical Analysis, Australian

National University Canberra, 1984.

Aad W. van der Vaart and Jon A. Wellner. Weak Convergence and Empirical Processes. Springer, 1996.

39



	Introduction
	Organization and Related Literature
	Notation

	Setup
	Boundary Average Treatment Effect Curve
	Treatment Effect Estimation
	Uncertainty Quantification
	Implementation

	Weighted Boundary Average Treatment Effect
	Largest Boundary Average Treatment Effect
	The Causal Effects of SPP on College Attendance
	Extensions
	Imperfect Compliance
	Pre-treatment Covariates

	Conclusion
	Setup
	Notation and Definitions
	Mapping Between Paper and Supplement

	Preliminary Lemmas
	Boundary Average Treatment Effect Curve
	Point Estimation and MSE Expansions
	Distributional Approximation and Inference

	Weighted Boundary Average Treatment Effect
	Largest Boundary Average Treatment Effect
	Gaussian Strong Approximation
	Definitions for Function Spaces
	Residual-based Empirical Process

	Proofs
	Proof of Lemma SA-1
	Proof of Lemma SA-2
	Proof of Lemma SA-3
	Proof of Lemma SA-4
	Proof of Lemma SA-5
	Proof of Theorem SA-1
	Proof of Theorem SA-2
	Proof of Theorem SA-3
	Proof of Theorem SA-4
	Proof of Theorem SA-5
	Proof of Theorem SA-6
	Proof of Lemma SA-6
	Proof of Lemma SA-7
	Proof of Theorem SA-7
	Proof of Theorem SA-8
	Proof of Theorem SA-9
	Proof of Theorem SA-10
	Proof of Theorem SA-11


