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Abstract

Uncertainty quantification in causal inference settings with random network in-
terference is a challenging open problem. We study the large sample distributional
properties of the classical difference-in-means Hajek treatment effect estimator, and
propose a robust inference procedure for the (conditional) direct average treatment ef-
fect, allowing for cross-unit interference in both the outcome and treatment equations.
Leveraging ideas from statistical physics, we introduce a novel Ising model capturing
interference in the treatment assignment, and then obtain three main results. First,
we establish a Berry-Esseen distributional approximation pointwise in the degree of
interference generated by the Ising model. Our distributional approximation recov-
ers known results in the literature under no-interference in treatment assignment, and
also highlights a fundamental fragility of inference procedures developed using such a
pointwise approximation. Second, we establish a uniform distributional approximation
for the Hajek estimator, and develop robust inference procedures that remain valid
regardless of the unknown degree of interference in the Ising model. Third, we propose
a novel resampling method for implementation of robust inference procedure. A key
technical innovation underlying our work is a new De-Finetti Machine that facilitates
conditional i.i.d. Gaussianization, a technique that may be of independent interest in
other settings.
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1 Introduction
We study the large sample distributional properties of the classical Hajek average treatment
effect estimator, and propose a robust inference procedure for the (conditional) direct average
treatment effect, in the presence of cross-unit interference in both the outcome and treatment
equations. This causal inference problem arises in a variety of contexts such as (online)
social networks, medical trials, and socio-spatial studies, and has received renewed attention
in recent years. Recent contributions include [1], [11], [10], [12], [18], [20], and references
therein. See [8] for a modern textbook introduction to causal inference.

The key challenge in causal inference settings with interference is that units can affect
each other in arbitrary ways, making statistical inference difficult without disciplining the
degree of cross-unit interference: it is common to assume that units correspond to vertices in
a network, typically represented as a graph, such that only when units are connected by an
edge, they may influence each other. Early literature assumed that the underlying network
was fixed, or otherwise known, but more recent advances have considered estimation and
inference methods allowing the network to be a random (unobserved) graph (see Assumption
1 below). Furthermore, due to the challenges introduced by the presence of the latent
random graph structure, it is common in the literature to restrict the degree of interference
entering the outcome and treatment equations: prior work has focused on the special case
where the potential outcomes exhibit restricted interference in the form of annonymity or
exchangability (see Assumption 2 below), but the treatment assigment mechanism does not
exhibit interference. We contribute to this emerging causal inference literature by allowing
for the treatment assignment mechanism to also exhibit restricted cross-unit interference,
while retaining the other semiparametric modelling assumptions imposed in previous work.

Leveraging ideas from statistical physics [7], we introduce a class of Ising equiprobable
treatment assignment mechanisms described by

Pβ(T = t) ∝ exp
(β
n

∑

i ̸=j
(2ti − 1)(2tj − 1)

)
, (1)

where T = (T1, . . . , Tn)
⊤ ∈ {0, 1}n denote the vector of binary treatment assignments for n

units, t = (t1 . . . , tn)
⊤, and the unknown parameter β ≥ 0 controls the degree of cross-unit

interference in their treatment assignments (see Assumption 3 below). This model explicitly
accounts for the stochastic nature of network formation in the treatment equation, and
reduces to the classical independent equiprobable treatment assignment rule when β = 0
(i.e., random assignment with equal probability). Thus, the Ising equiprobable treatment
assignment model allow us to investigate how prior conclusions in the literature change as
a function of the degree of cross-unit interference in treatment assignment as controlled by
the unknown parameter β.

To streamline the presentation, and due to some technical issues, we focus on the mod-
erate cross-unit interference regime β ∈ [0, 1]. See Section 8 for more discussion. Our first
contribution concerns the large sample distributional properties of the classical difference-in-
means Hajek estimator (see (3) below). Theorem 3.1 establishes a Berry-Esseen bound for
the estimator, that is, a distributional approximation in Kolgomorov distance with explicit
convergence rates. The closest antecedent is [12], who considered the same causal model
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with network interference but under the assumption β = 0 (random treatment assignment),
and established a Gaussian distributional approximation for the Hajek estimator. Theorem
3.1 establishes a precise distributional approximation with explicit convergence rates and,
more importantly, shows that: (i) for β ∈ [0, 1), the limiting distribution continues to be
Gaussian, but the asymptotic variance exhibits an additional term that captures the cross-
unit interference in the treatment equation; (ii) for β ∈ [0, 1), the new asymptotic variance
coincides with the one obtained in [12] when β = 0 but is increasing and unbounded as a
function of β; and (iii) for β = 1, the limiting distribution is non-Gaussian. These findings
have an important implication for the robustness of inference procedures developed under
the assumption of no-interference in the treatment assignment (β = 0): the distribution
approximation changes as a function of β ≥ 0, exhibiting a discontinuity at β = 1, thereby
invalidating inference procedures obtained from distributional approximations that only hold
pointwise in β.

The lack of uniform validity demonstrated in Theorem 3.1 poses a major challenge for
developing robust inference procedures in the presence of potential interference in the treat-
ment assignment because β is unknown in practice. Moreover, [16] showed that no consistent
estimator exists for β ∈ [0, 1), making plug-in inference procedures infeasible, even pointwise
in β ∈ [0, 1). To address these challenges, Theorem 4.1 establishes a uniform in β ∈ [0, 1]
distributional approximation for the Hajek estimator and, as a necessary by-product, also
establishes a uniform distributional approximation in β ∈ [0, 1] for its Maximum Pseudo-
Likelihood estimator (MPLE); see [17]. The resulting distributional approximations are
indexed by a localization parameter offering a smooth transition between the discontinuous
limit laws established in Theorem 3.1, as well as for those corresponding to the MPLE of β.

Building on Theorem 4.1, and employing a Bonferroni-correction procedure that works
by creating hierarchical confidence intervals for different β-regimes, we present uniformly
valid uncertainty quantification for the (conditional) direct average treatment effect τn (see
: we develop infeasible (Theorem 4.2) and feasible (Theorem 5.1) prediction intervals Cn(α)
satisfying

lim inf
n→∞

inf
β∈[0,1]

Pβ[τn ∈ Cn(α)] ≥ 1− α,

for α ∈ [0, 1], where Cn(α) is based on the Hajek estimator and a novel resampling procedure
aimed to capturing sampling uncertainty coming from the underlying network. To the best of
our knowledge, our proposed feasible inference procedure is new for β = 0. More importantly,
our proposed inference procedure is the first to offer robust (uniform) validity across all values
of β ∈ [0, 1]. Section 6 presents a simulation study demonstrating the performance of our
proposed methods.

1.1 Summary of Methodological and Technical Contributions

From a methodological perspective, our paper contributes to the literature on causal inference
under cross-unit interference. Classical contributions include [9], [19], [15], and references
therein. The closest antecedent to our work is [12], who studied distribution theory for the
same casual inference model with network interference considered in this paper except for
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assuming random treatment assignment (i.e., without interference in the treatment assign-
ment mechanism). Thus, our first methodological contribution is to propose a novel Ising
equiprobable treatment assignment model to capture the possible interdependency between
treatment assignments when units can interference with each other. The model covers the
equiprobable experimental design, as well as a class of dependent treatment assignments as
indexed by β in (1). Furthermore, our second main methodological contribution is to present
a novel, feasible robust inference procedure for the (conditional) direct average treatment
effect, which is uniformly valid for all β ∈ [0, 1]. This procedure relies on a Bonferroni correc-
tion together with a uniform distributional approximation for the Hajek estimator, taking
into account the different β-regimes, and also leverages a new resampling-based variance
estimator developed herein. Our proposed inference procedure appears to be new even in
the special case of β = 0 (no-interference in treatment assignment).

From a technical perspective, our paper also offers a contribution to the applied probabil-
ity literature, particularly in the context of statistical mechanics [7]. Allowing for interference
in treatment assignment leads to major technical challenges for establishing distribution the-
ory for the Hajek estimator, since the Ising equiprobable treatment model introduces new
sources of dependence that need to be taken into account. For example, as shown in Theo-
rem 3.1, the Hajek estimator exhibits different concentration rates around τn depending on
whether β = 1 or not, in addition to having different limit laws. Our first technical contri-
bution is to develop a new De-Finetti Machine that leverages the exchangeability structure
in the treatment vector induced by Ising model, which we then use to establish a Berry-
Esseen bound under the different β-regimes. This new technique is based on a carefully
crafted conditioning argument that renders the elements of T conditionally i.i.d., thereby
reducing the problem to establishing a Berry-Esseen bound for conditionally i.i.d. random
variables. Our new technical approached generalizes [5] and [6] by considering a multiplier
Curie-Weiss magnetization statistic, without relying on variants of Stein’s method [5], and
instead using a novel conditional i.i.d. Gaussianization approach. Our new technique may
be of independent interest in other settings considering establishing a Berry-Esseen bound
for sum of exchangeable random variables. To address the uniform inference problem, we
further establish uniform in β ∈ [0, 1] distributional approximations: our results cover both
the Hajek estimator and the MPLE for β. Thus, a second technical contribution of our work
is to the literature on distributional properties of the Ising model.

1.2 Organization

Section 2 formalizes the setup. Section 3 presents pointwise in β ∈ [0, 1] distribution the-
ory for the Hajek estimator. Section 4 presents uniform in β ∈ [0, 1] distribution theory,
and discusses an infeasible uniformly valid inference procedure. Section 5 proposes a fea-
sible inference procedure based on resampling methods. Section 6 presents simulation evi-
dence. Section 7 overviews our technical contributions, including Berry-Esseen bounds for
Curie-Weiss magnetization with independent multipliers, and Section 8 concludes with open
questions and future research directions.
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2 Setup
We consider a random potential outcome framework under network interference. For each
unit i ∈ [n] = {1, 2, · · · , n}, let Yi(t; t−i) denote its random potential outcome when assigned
to treatment level t ∈ {0, 1} while the other units are assigned to treatment levels t−i ∈
{0, 1}n−1. The vector of observed random treatment assignments for the n units is T = (Ti :
i ∈ [n]), and T−i denotes the associated random treatment assignment vector excluding Ti.
Thus, the observed data is (Yi, Ti : i ∈ [n]) with Yi = (1 − Ti)Yi(0;T−i) + TiYi(1;T−i) for
each i ∈ [n].

Interference among the n units is modelled via a latent network characterized by an
undirected random graph G(V,E) with vertex set V = [n] and (random) adjacency matrix
E = (Eij : (i, j) ∈ [n] × [n]) ∈ {0, 1}n×n. The following assumption restricts this random
graph structure.

Assumption 1 (Network Structure). The random network E satisfies: For all 1 ≤ i ≤
j ≤ n and ρn ∈ (0, 1], Eii = 0, Eij = Eji, and Eij = 1(ξij ≤ min{1, ρnG(Ui, Uj)}), where
G : [0, 1]2 7→ R+ is symmetric, continuous and positive on [0, 1]2, U = (Ui : i ∈ [n]) are
i.i.d. Uniform[0, 1] random variables, Ξ = (ξij : (i, j) ∈ [n]× [n], i < j) are i.i.d Uniform[0, 1]
random variables. Finally, U and Ξ are independent.

This assumption corresponds to the sparse graphon model of [3]. The parameter ρn
controls the sparsity of the network, and will play an important role in our theoretical
results. The variable Ui is a latent heterogenous property of the ith unit, and G(Ui, Uj)
measures similarity between traits of Ui and Uj. This allows for a stochastic model for the
edge formation.

Building on the underlying random graph structure, the following assumption imposes
discipline on the interference entering the outcome equation.

Assumption 2 (Exchangable Smooth Potential Outcomes Model). For all i ∈ [n], Yi(Ti;T−i) =
fi(Ti;

Mi

Ni
) where Mi =

∑
j ̸=iEijTj, Ni =

∑
j ̸=i Tj, and f = (fi : i ∈ [n]) are i.i.d random func-

tions. In addition, for all i ∈ [n] and some integer p ≥ 4, max1≤i≤nmaxt∈{0,1}|∂(p)
2 fi(t, ·)|< C

for some C not depending on n and β. Finally, f is independent to Ξ.

This second assumption imposes two main restrictions on the potential outcomes. First,
a dimension reduction is assumed via the underlying network structure (Assumption 1),
making the potential outcomes for each unit i ∈ [n] a function of only their own treatment
assignment and the fraction of other treated units among their (connected) peers. Second,
the potential outcomes are assumed to be smooth as a function of the fraction of treated
peers, thereby ruling out certain types of outcome variables (e.g., binary or similarly limited
dependent variable models). Assumption 2 explicitly parametrizes the smoothness level
p because, together with the the sparsity parameter ρn in Assumption 1, it will play an
important role in our theoretical results.

To close the causal inference model, the following assumption restricts the treatment
assignment distribution. We propose an Ising model from statistical physics [7].
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Assumption 3 (Ising Equiprobable Treatment Assignment). The treatment assignment
mechanism follows a Curie-Weiss distribution:

Pβ(T = t) =
1

Cβ
exp

(
β

n

∑

i ̸=j
(2ti − 1)(2tj − 1)

)
, (2)

where t ∈ {0, 1}n, β ∈ [0, 1], and Cβ is determined by the condition
∑

t Pβ(T = t) = 1.

This model naturally encodes a class of equiprobable, possibly dependent treatment as-
signment mechanisms. Assumption 3 implies Pβ(Ti = 1) = 1

2
for i ∈ [n] and all β ≥ 0, but

allows for correlation in treatment assignment as controlled by β. When β = 0, treatment
assignment becomes independent across units, and thus the assignment mechanism reduces
to the canonical (equiprobable) randomized allocation. For β ∈ [0, 1], the Ising mechanism
induces positive pairwise correlations, capturing social interdependence phenomena like peer
influence [14] characteristic of observational settings.

We propose a robust inference procedure based on the popular Hajek estimator

τ̂n =

∑n
i=1 TiYi∑n
i=1 Ti

−
∑n

i=1(1− Ti)Yi∑n
i=1(1− Ti)

. (3)

This classical estimator is commonly used in causal inference, both with and without in-
terference. In particular, [12] studied the asymptotic properties of τ̂n when β = 0, under
Assumptions 1–3, and showed that

√
n(τ̂n − τn)⇝ N(0, κ2), κs = E[(Ri − E[Ri] +Qi)

s], (4)

where⇝ denotes weak convergence as n → ∞, the standard target is the (conditional) direct
average treatment effect given by

τn =
1

n

n∑

i=1

E[Yi(1;T−i)− Yi(0;T−i)|fi(·),E], (5)

and Ri = fi(1,
1
2
)+fi(0,

1
2
) and Qi = E[ G(Ui,Uj)

E[G(Ui,Uj)|Uj ]
(f ′
j(1,

1
2
)−f ′

j(0,
1
2
))|Ui]. The (conditional)

direct average treatment effect in (5) is a predictand, not an estimand, in the sense that
it is a random variable that needs not to settle to a non-random probability limit under
the assumptions imposed. Consequently, our uncertainty quantification methods can be
regarded as prediction intervals for the classical target predictand τn in the causal inference
literature.

3 Pointwise Distribution Theory
Our first main result is a Berry-Esseen bound for the Hajek estimator, pointwise in β ∈ [0, 1],
that is, the degree of treatment assignment interference. We provide a proof sketch in
Section 7, with full technical details deferred to the supplementary material.
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Theorem 3.1 (Pointwise Distribution Theory). Suppose Assumptions 1, 2, and 3 hold.
Then,

sup
t∈R

|P[τ̂n − τn ≤ t]− Ln(t; β, κ1, κ2)| = O
( log n√

nρn
+ rn,β

)
,

where Ln(·; β, κ1, κ2) and rn,β are as follows. Then: (1) High temperature: if β ∈ [0, 1),

Ln(t; β, κ1, κ2) = Pβ
[
n−1/2

(
κ2 + κ2

1

β

1− β

)1/2
Z ≤ t

]
(6)

with Z ∼ N(0, 1), and rn,β =
√
n log n(nρn)

− p+1
2 .

(2) Critical temperature: if β = 1,

Ln(t; β, κ1, κ2) = Pβ[n−1/4κ1W0 ≤ t] (7)

with P[W0 ≤ w] =
∫ w
−∞ exp(−z4/12)dz∫∞
−∞ exp(−z4/12)dz , w ∈ R, and rn,β = (log n)3n− 1

4 + 4
√
n
√
log n(nρn)

− p+1
2 .

In the high temperature regime (β ∈ [0, 1)),
√
n(τ̂n − τn) is asymptotically normal with

variance κ2+κ2
1

β
1−β . Thus, when β = 0, our result recovers (4), but for β ∈ (0, 1), the asymp-

totic variance is strictly increasing unless κ1 = 0 (i.e., no randomness from the underlying
network). In the Critical temperature regime (β = 1), the limiting distribution is non-
Gaussian. The distinct asymptotic behaviors of τ̂n across these regimes mirror the phase
transition phenomena observed in the Ising model’s magnetization m = 1

n

∑n
i=1(2Ti − 1).

The first term in the Berry-Esseen bound, log n(nρn)−1/2, is not improvable beyond the ex-
tra logarithmic factor because log(n)n−1/2 when ρn ≍ 1. For the second term, rn,β, the
bound depends on the smoothness p of the potential outcome function and the temperature
regime.

Theorem 3.1 highlights key challenges in uncertainty quantification, with unknown quan-
tities κ1 and κ2, and the unknown regime parameter β ∈ [0, 1]. Furthermore, [2] es-
tablished an impossibility result showing that no consistent estimator for β exists in the
high-temperature regime. In the following section, we address the estimation of β and the
complications arising from the discontinuous transition between Gaussian and non-Gaussian
laws.

4 Infeasible Robust Inference
This section addresses inference on the treatment effect when the regime parameter β is
unknown, but assuming that κ1 and κ2 are known.

4.1 Maximum Pseudo-Likelihood Estimator (MPLE) for Tempera-
ture

Due to the existence of the normalizing constant Cβ in (2), maximum likelihood estimation
is not computationally efficient. However, the conditional distribution of Ti given the rest

7



of treatments adopts a closed form solution and can be optimized efficiently [17]. Define
Wi = 2Ti − 1, W−i = {Wj : j ∈ [n], j ̸= i}, and mi =

1
n

∑
j ̸=iWj. The MPLE for β is

β̂n = argmax
β∈[0,1]

∑

i∈[n]
logPβ[Wi|W−i] = argmax

β∈[0,1]

∑

i∈[n]
− log

(
1

2
Wi tanh(βmi) +

1

2

)
.

We show in Lemma 6 in the supplementary appendix that the limiting distribution of β̂n
also depends on the regime β ∈ [0, 1]. For β ∈ [0, 1), 1 − β̂n ⇝ (1 − β)max{(χ2

1)
−1, 0},

thereby ruling out consistent estimation. For β = 1,
√
n(β̂n − 1) ⇝ min{W2

0/3 − 1/W2
0, 1},

where W0 is given in Theorem 3.1. For fixed n, the distribution of β̂n − 1 exhibits the same
discontinuity at β = 1 as τ̂n − τn, highlighting the need for a distributional approximation
that is uniform in β for valid inference across all regimes.

4.2 Robust Distribution Theory

We develop valid large sample inference for all values of β ∈ [0, 1]. From Theorem 3.1, for all
β ∈ [0, 1), the limiting variance of

√
n(τ̂n−τn) is κ2+κ2

1
β

1−β . Thus, when κ1 ̸= 0, the asymp-
totic variance diverges as β approaches the critical value β = 1. In contrast, Theorem 3.1
shows that when β = 1 the limiting variance of n1/4(τ̂n − τn) is finite. This discrepancy
indicates a lack of uniform validity in the distributional approximations in Theorem 3.1. To
address this issue, we establish a uniform distributional approximation based on the drifting
sequence βn = 1 + c√

n
. This sequence follows the knife-edge rate, ensuring that the law of

τ̂n − τn smoothly interpolates between the pointwise distributional approximations indexed
by β ∈ [0, 1].

Theorem 4.1 (Robust Distribution Theory). Suppose Assumptions 1, 2 and 3 hold. Define
cβ,n =

√
n(1− β). Then,

lim
n→∞

sup
0≤β≤1

sup
t∈R

∣∣∣Pβ[τ̂n − τn ≤ t]− Pβ[n− 1
2κ

1
2
2 Z+ β

1
2n− 1

4κ1Wcβ,n ≤ t]
∣∣∣ = 0

with Z ∼ N(0, 1) independent of Wc, and P[Wc ≤ w] =
∫ w
−∞ exp(−x4

12
− cx2

2
)dx

∫∞
−∞ exp(−x4

12
− cx2

2
)dx

, w ∈ R. Further-
more,

lim
n→∞

sup
0≤β≤1

sup
t∈R

∣∣∣Pβ[1− β̂n ≤ t]− Pβ[ min{max{T−2
cβ,n,n

− T2
cβ,n,n

/(3n), 0}, 1} ≤ t]
∣∣∣ = 0

where Tc,n = Z+ n
1
4Wc.

Theorem 4.1 establishes that Hn(t;κ1, κ2, cβ,n) = Pβ[n− 1
2κ

1
2
2 Z + β

1
2n− 1

4κ1Wcβ,n ≤ t] uni-
formly approximates the distribution of τ̂n − τn in both the high-temperature and critical-
temperature regimes. Under the knife-edge scaling, the leading term n−1/2κ

1/2
2 Z becomes neg-

ligible, and the typical knife-edge representation retains only the second term β1/2n−1/4κ1Wc.
However, when β ∈ [0, 1) is fixed and cβ,n =

√
n(1 − β) → ∞, Wcβ,n approximates

n−1/4N(0, (1−β)−1), making both terms comparable in order. Consequently, we retain both
terms in the distributional approximation. In Lemma 4 in the supplementary , we show that
when β is fixed and cβ,n =

√
n(1−β), we have supt∈R|Hn(t;κ1, κ2, cβ,n)−Ln(t;κ1, κ2, β)|→ 0.

The same ideas apply to the uniform approximation of 1− β̂n.
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4.3 Infeasible Uniform Inference

We can now propose a conservative prediction interval based on the following Bonferroni-
correction procedure. In particular, in the first step, a uniform confidence interval for β
is constructed under the knife-edge approximation, and in the second step, we choose the
largest quantile for τ̂n − τn among all β’s in the confidence interval. The quantile chosen is
also based on the knife-edge approximation.
Algorithm 1: Infeasible Uniform Inference

Input: Treatments and outcomes (Ti, Yi)i∈[n], MPLE-estimator β̂n, an upper bound

Kn such that κ
1
2
2 ≤ Kn, confidence level parameters α1, α2 ∈ (0, 1).

Output: An (1− α1 − α2) prediction interval C†(α1, α2) for τn.

Get the maximum pseudo-likelihood estimator β̂n of β;

Define the (1− α1)-confidence region given by I(α1) = {β ∈ [0, 1] : 1− β̂n ∈ [q,∞)},
where q = inf{q : P[min{max{T−2

cβ,n,n
− T2

cβ,n,n
/(3n), 0}, 1} ≤ q] ≥ α1};

Take U = supβ∈I(α1) Hn(1− α2

2
;Kn, Kn, cβ,n), L = infβ∈I(α1) Hn(

α2

2
;Kn, Kn, cβ,n).

return C†(α1, α2) = [τ̂n + L, τ̂n + U].

Theorem 4.2 (Infeasible Uniform Inference). Suppose Assumptions 1, 2 and 3 hold, and
let Kn be a sequence such that κ

1
2
2 ≤ Kn. Then, the prediction interval given by Algorithm 1

satisfies lim infn→∞ infβ∈[0,1] Pβ(τn ∈ C†(α1, α2)) ≥ 1− α1 − α2.

Theorem 4.2 gives a lower bound on the coverage of the proposed confidence region. Algo-
rithm 2 can be implemented without the knowledge of the parameter of the Ising treatment
model, but requires knowledge of κ1 and κ2. A fully feasible implementation is discussed
next.

5 Implementation
The unknown parameters κ1 and κ2 capture moments of the underlying random graph struc-
ture. Building on [13], we propose a resampling method for consistent estimation of those
parameters under an additional nonparametric assumption on the outcome equation.

Assumption 4. Suppose fi(·, ·) = f(·, ·) + εi, where f(t, ·) is 4-times continuously differen-
tiable on [0, 1] for t ∈ {0, 1}, and (εi : 1 ≤ i ≤ n) are i.i.d and independent of E and T, with
E[εi] = 0 and E[|εi|2+ν ] < ∞ for some ν > 0.

This assumption allows for nonparametric learning the regression function f . In Section
4 in the supplementary material, we provide one example of such learner, but here we
remain agnostic and thus present high-level conditions. This step aims to find a consistent
estimate for both the function f and its derivative ∂f(·,x)

∂x
, which can be achieved through the

introduction of Assumption 4. We propose the following novel algorithm for estimating κ2

based on resampling methods.
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Algorithm 2: Estimation of κ2

Input: Treatments and outcomes (Ti, Yi)i∈[n], realized graph E, non-parametric
learner f̂ of f .

Output: An upper bound K̂n for κ2.

Generate a new sample (T ∗
i : 1 ≤ i ≤ n) with β = 0;

Take M∗
j =

∑
l ̸=j EjlT

∗
l , N∗

j =
∑

l ̸=j Ejl, M∗
j,(i) =

∑
l ̸=i,j EjlT

∗
l , N∗

j,(i) =
∑

l ̸=i,j Ejl;

Take ε̂i = Yi − Tif̂(1,
∑

j ̸=i EijTj∑
j ̸=i Tj

)− (1− Ti)f̂(0,
∑

j ̸=i EijTj∑
j ̸=i Tj

);

Take τa(i) = n−1
∑

j ̸=i 2T
∗
j (f̂(1,

M∗
j

N∗
j
) + ε̂j)− 2(1− T ∗

j )(f̂(0,
M∗

j

N∗
j
) + ε̂j), and

τ b(i) = n−1
∑

j∈[n] 2T
∗
j (f̂(1,

M∗
j,(i)

N∗
j,(i)

) + ε̂j)− 2(1− T ∗
i )(f̂(0,

M∗
j,(i)

N∗
j,(i)

) + ε̂j);

Take τa = n−1
∑

i∈[n] τ
a
(i), τ

b = n−1
∑

i∈[n] τ
b
(i), and

K̂n = n
∑

i∈[n](τ
a
(i) − τa + τ b(i) − τ b)2.

return K̂n.

Our procedure consists of three steps. In step 1, we estimate f non-parametrically by f̂ .
In step 2, we construct two types of plug-in and leave-one-out estimator, denoted by {τa(i)}i∈[n]
and {τ b(i)}i∈[n] respectively. τa(i) accounts for the randomness from flipping i-th unit’s own
treatment. τ b(i) accounts for randomness from flipping j-th unit’s treatment, where j is a
neighbor of i. In Step 3, we form our final variance estimator using the resampling based
treatment effect estimators similar to the i.i.d. case. Formal results on the guarantees given
in Lemma 16 in the supplementary material.
Algorithm 3: Feasible Uniform Inference
Input: Treatments and outcomes (Ti, Yi)i∈[n], realized graph E, non-parametric

learner f̂ of f .
Output: A fully data-driven (1− α1 − α2) prediction interval Ĉ(α1, α2) for τn.

Get K̂n from Algorithm 2 using the treatments and outcomes (Ti, Yi)i∈[n], the
realized random graph E, a non-parametric learner f̂ for f ;

Get Ĉ(α1, α2) from Algorithm 1 given (Ti, Yi)i∈[n] and K̂n.
return Ĉ(α1, α2).

Theorem 5.1 (Feasible Robust Confidence Interval). Suppose Assumptions 1, 2, 3, and
4 hold. Suppose the non-parametric learner f̂ satisfies f̂(ℓ, ·) ∈ C2([0, 1]), and |f̂(ℓ, π∗) −
f(ℓ, π∗)|= oP(1), |∂2f̂(ℓ, π∗) − ∂2f(ℓ, π∗)|= oP(1), for ℓ ∈ {0, 1}. If nρ3n → ∞, then the
prediction interval given by Algorithm 3 satisfies

lim inf
n→∞

sup
β∈[0,1]

Pβ[τn ∈ Ĉ(α1, α2)] ≥ 1− α1 − α2.

6 Simulations
We study the finite sample performance of our robust inference procedure. Take (Ui : 1 ≤ i ≤
n) i.i.d Uniform([0, 1])-distributed, graph function G(·, ·) ≡ 0.5 and density ρn = 0.5. The
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Ising-treatments satisfy Assumption 3 with various n and β. Yi has data generating process
Yi = 1(Ti = 1)f(1, Mi

Ni
)+1(Ti = 0)f(0, Mi

Ni
)+εi, with f(x1, x2) = x2

1+x1(x2+1)2, (x1, x2) ∈ R2

and (εi : 1 ≤ i ≤ n) are i.i.d N(0, 0.05) noise terms independent to ((Ui, Ti) : 1 ≤ i ≤ n). The
Monte-Carlo simulations are repeated with 5000 iterations and look at the 1− α confidence
interval with α = 0.1.

Figure 1 (a) and (b) demonstrate the empirical coverage and interval length against
β, while fixing n = 500. To compare multiple methods, conserv stands for Algorithm 3,
"β = 0" stands for using the formula from Theorem 3.1, Oracle stands for using the law
n−1/2κ̂

1/2
2 Z + n−1/4κ̂1Wcβ,n from Theorem 4.1 with cβ,n =

√
n(1− β) assumed to be known,

and Onestep stands for Algorithm 1 but taking the first step confidence interval I(α1) to be
the full range [0, 1] instead. For interval length, Simulated stands for the true interval length
from Monte-Carlo simulations. Conservative and Onestep remain conservative except when
β is close to 1, due to the second step in Algorithm 1 taking maximum quantile from
β ∈ I(α1); Oracle has empirical coverage close to 1−α and interval length close to the true
interval length from Monte-Carlo simulation; the approach of plugging in β = 0 becomes
invalid as β deviates from zero. Figure 1 (c) and (d) demonstrate log-log plots of interval
length against sample size, fixing β = 0. While the Monte-Carlo interval length Simulated
interval length ∝ n−0.52, consistent with the

√
n-convergence with β = 0, Conserv has

interval length ∝ n−0.34, an effect of taking the maximum quantile among β ∈ I(α1).

7 Main Technical Contribution
This section reports the main novel technical result in our paper: a Berry-Esseen distri-
butional approximation for Curie-Weiss magnetization with independent multipliers. This
section is self-contained, but omitted details are given in the supplemental appendix.

Lemma 7.1 (Ising Berry-Esseen Bound). For β ≥ 0, suppose P[W = w] ∝ exp(β
n

∑
i ̸=j wiwj),

where W = (W1, · · · ,Wn)
⊤, w = (w1, · · · , wn)⊤ ∈ {−1, 1}n, and (X1, · · · , Xn) are i.i.d. with

E[|Xi|3] < ∞, and independent of W. Then:
(1) Fix β ∈ [0, 1], then supt∈R|P( 1n

∑n
i=1 XiWi ≤ t) − Ln(t; (E[Xi],E[X2

i ]), β)|= O(rn,β),

where rn,β = n−1/2 for β ∈ [0, 1], rn,β = n−1/2(log n)3 for β = 1, where Ln is given in
Theorem 3.1.
(2) supβ∈[0,1] supt∈R|P( 1n

∑n
i=1XiWi ≤ t)−Hn(t;E[Xi],E[X2

i ], cβ,n)|= O(n−1/2(log n)3), where
cβ,n =

√
n(β − 1), and Hn is given immediately after Theorem 4.1.

These result generalize the Berry-Esseen bounds for Curie-Weiss magnetization 1
n

∑n
i=1 Wi

with multiplers set to Xi = 1 for i ∈ [n] obtained by [5] and [6]. Our generalized result differs
from theirs only in a logarithmic term, allowing for fairly general weights with third moment
bounded.

7.1 Proof Sketch of Lemma 7.1

The magnetization n−1
∑n

i=1Wi has been studied using Stein’s method [6, 4]. Due to the
multipliers, the Stein’s method can not be directly applied for n−1

∑n
i=1XiWi. We use a

novel strategy based on the following de Finetti’s lemma.
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(a) Empirical Coverage Across β (b) Interval Length Across β

(c) Conserv Interval Length vs n (d) Simulated Interval Length vs n

Figure 1: (a) and (b) are empirical coverages and interval lengths of four methods across β ∈ [0, 1]:
Conservative and Onestep remain conservative except when β is close to 1; Oracle has empirical coverage
close to 1−α and interval length close to the true interval length from Monte-Carlo simulation; the approach
of plugging in β = 0 becomes invalid as β deviates from zero. (c) shows Conserv interval length ∝ n−0.34.
(d) shows Simulated interval length ∝ n−0.52.

de Finetti’s Lemma. There exists a latent variable Un such that W1, · · · ,Wn are i.i.d condition
on Un. Moreover, the density of Un satisfies fUn(u) ∝ exp(−1

2
u2+n log cosh(

√
β/nu)), u ∈ R.

We provide a proof sketch of Lemma 7.1 (2). Rigorous proofs for the other regimes
given in Section 1 of the supplementary material. Denote by C an absolute constant, K a
constant that only depends on the distribution of Xi, and O(·) is by an absolute constant.
Throughout, take c =

√
n(β − 1).

Step 1: Conditional Berry-Esseen. Wi’s are i.i.d condition on Un with e(Un) =
E [XiWi|Un] = E [Xi] tanh(

√
β/nUn), and v(Un) = V [XiWi|Un] = E [X2

i ]−E [Xi]
2 tanh2(

√
β/nUn).

Apply Berry-Esseen Theorem conditional on Un, and take Z ∼ N(0, 1) independent to Un,

sup
t∈R

|P( 1
n

n∑

i=1

XiWi ≤ t|Un)− P(
√
v(Un)Z+

√
ne(Un) ≤ t|Un)|≤ CE

[
|Xi|3

]
v(Un)n

−1/2.

Lemma 2 in the supplementary material shows ∥Un∥ψ2 ≤ Cn1/4, hence by concentration

12



arguments, supt∈R|P( 1n
∑n

i=1XiWi ≤ t)− P(
√

v(Un)Z+
√
ne(Un) ≤ t)|≤ Kn−1/2.

Step 2: Non-Normal Approximation for n− 1
4Un. Consider Wn = n−1/4Un. By a change

of variable from Un and Taylor expand what is inside the exponent, we show Wn has density
satisfying

fWn(w) ∝ exp(− c

2
w2 − β2

n

12
w4 + g(w)β3

nn
− 1

2w6),

where g is a bounded smooth function. We show based on sub-Gaussianity of Wn, with an
upper bound of sub-Gaussian norm not depending on β, that the sixth order term is negligible
and supt∈R|P(Wn ≤ t)− P(W ≤ t)|= O((log n)3n−1/2), where W has density proportional to
exp(− c

2
w2 − β2

n

12
w4).

Step 3: Concentration Arguments. Since Z is independent to (Un,Wn), we use data pro-
cessing inequality and the previous two steps to show 1

n

∑n
i=1XiWi is close to n− 1

4v(n
1
4Wc)

1
2Z+

n
1
4 e(n

1
4Wc)). Lemma 2 in the supplementary appendix imply ∥W∥ψ2 ≤ K. By Taylor ex-

panding e(·) and v(·) at 0, we show n1/4e(Un) is close to E[Xi]W and n−1/4
√
v(Un)Z is close

to n− 1
4v(n

1
4W)

1
2Z.

8 Discussion
This section discusses related results and future research directions.

8.1 Low Temperature Regime

The low temperature regime corresponds to β > 1, which was excluded from the main results
presented. In this case the Hajek estimator converges to a different (conditional) direct
treatment effect that also depends on which side of the half line sgn(m) = sgn( 2

n

∑n
i=1 Ti−1)

lies on, due to the convergence of Mi

Ni
to a two-point distribution depending on sgn(m). Define

τn,ℓ =
1

n

n∑

i=1

E[Yi(1;T−i)− Yi(0;T−i)|fi(·),E, sgn(m) = ℓ], ℓ ∈ {−,+},

which is a new causal predictand in the context of our causal inference model with interfer-
ence. In the supplemental appendix, and under the assumptions imposed in the paper, we
show that

sup
t∈R

max
ℓ∈{−,+}

|P(τ̂n − τn,ℓ ≤ t|sgn(m) = ℓ)− Ln(t; β, κ1,ℓ, κ2,ℓ)| = O(

√
n log n

(nρn)p+1
+

log n√
nρn

),

where κs,ℓ = E[(Ri,ℓ +Qi,ℓ)
s] with Ri,ℓ = fi(1, πℓ)− E[fi(1, πℓ)] + fi(0, πℓ)− E[fi(0, πℓ)] and

Qi,ℓ = E[ G(Ui,Uj)

E[G(Ui,Uj)|Uj ]
(f ′
j(1, πℓ)− f ′

j(0, πℓ))|Ui], and

Ln(t; β, κ1, κ2) = P
(
n−1/2

(
κ2(1− π2

∗) + κ2
1

β(1− π2
∗)

1− β(1− π2
∗)

)1/2

Z ≤ t
)

13



with Z ∼ N(0, 1) independent of m, π∗ the positive root of x = tanh(βx), and π+ = 1
2
+ 1

2
π∗,

π− = 1
2
− 1

2
π∗. Inference for the conditional estimand is left for future works, with a challenge

in a discontinuity in the estimand as we move from the critical regime to the low temperature
regime.

8.2 Generalized Ising Model

In this work we assumed treatments are dependent through a fully connected graph. It
is also of interest to study settings where the graph underlying treatment assignment has
a block structure, or depends on unit-level properties. In the structured Ising setting, we
might also consider estimation and inference for the block level or heterogenous direct aver-
age treatment effect.

Acknowledgements. Cattaneo gratefully acknowledges financial support from the National
Science Foundation through DMS-2210561 and SES-2241575.
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Abstract

This Supplemental Material contains general theoretical results encompassing those discussed in
the main paper, includes proofs of those general results, and discusses additional methodological
and technical results.
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SA-1 Notation

For a sequence of real-valued random variables Xn, we say Xn = Oψp(rn) if there exists N ∈ N
and M > 0 such that ∥Xn∥ψp ≤ Mrn for all n ≥ N , where ∥·∥ψp is the Orlicz norm w.r.p ψp(x) =
exp(xp) − 1. We say Xn = Oψp,tc(rn), tc stands for tail control, if there exists N ∈ N and M > 0

such that for all n ≥ N and t > 0, P(|Xn|≥ t) ≤ 2n exp(−(t/(Mrn))
p) +Mn−1/2.

SA-2 Berry-Esseen Results for Curie-Weiss magnetization with In-
dependent Multipliers

For β ≥ 0, the Curie-Weiss model of ferromagnetic interaction at inverse temperature β and zero
external field is given by the following Gibbs measure on {−1,+1}n:

Pβ (w) =
1

Zβ
exp


β
n

∑

i<j

wiwj


 , w = (w1, · · · , wn) ∈ {−1, 1}n, (SA-1)

where Zβ is the normalizing constant.
Suppose W = (W1, · · · ,Wn) is a random vector with law Pβ . Then E[Wi] = 0 and m =

n−1
∑n

i=1Wi. The Curie-Weiss model has a phase transition phenomena between regimes. The
case 0 ≤ β ≤ 1 is called the high temperature regime, where m concentrates around 0. The case
β > 1 is called the low temperature regime, where m concentrates on the set {−π∗, π∗}, π∗ being the
unique positive solution to x = tanh(βx). The case β = 1 is called the critical temperature regime.

Suppose X = (X1, · · · , Xn) has i.i.d components such that E
[
|X1|3

]
< ∞ independent to W.

The goal is to study the limiting distribution and the rate of convergence for

gn = n−1
n∑

i=1

WiXi.

The magnetization n−1
∑n

i=1Wi has been studied using Stein’s method [5], [3]. Due to the multi-
pliers, the Stein’s method can not be directly applied for gn. We use a novel strategy based on the
following de Finetti’s lemma to show Berry Essseen results.

Lemma SA-1 (de Finetti’s Lemma). There exists a latent variable Un with density

fUn(u) = I−1
Un

exp

(
− 1

2
u2 + n log cosh

(√
β

n
u

))
,

where IUn =
∫∞
−∞ exp(−1

2u
2+n log cosh(

√
β
nu))du, such that W1, · · · ,Wn are i.i.d condition on Un.

Lemma SA-2. Take Un to be a random variable with density function fUn(u) = I−1
Un

exp(−1
2u

2 +

n log cosh(
√

β
nu + h)) where IUn =

∫∞
−∞ exp

(
−1

2u
2 + n log cosh

(√
β/nu+ h

))
du. Take Wn =

n−
1
4Un. Then

1. High-temparature case: Suppose h ̸= 0 or h = 0, β < 1. Then ∥Un − E[Un]∥ψ2 ≲ 1.

2. Critical-temparature case: Suppose h = 0 and β = 1. Then ∥Un∥ψ2 ≲ n1/4.
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3. Low-temparature case: Suppose h = 0 and β > 1. Then condition on Un ∈ Cl, ∥Un−E[Un|Un ∈
Cl]∥ψ2 ≲ 1.

4. Drifting sequence case: Suppose h = 0, β = 1− cn−
1
2 , c ∈ R+. Then ∥Un∥ψ2 ≤ Cn1/4 for large

enough n with C not depending on β.

Fix β > 0. We characterize the limiting distribution of n−1
∑n

i=1WiXi and the rate of conver-
gence as n → ∞ in the following lemma. In particular, we will see that the limiting distribution
changes from a Gaussian distribution under high temperature, to a non-Gaussian distribution under
critical temperature, to a Gaussian mixture under low temperature.

Lemma SA-3 (Fixed Temperature Berry-Esseen). Then

1. When β < 1,

sup
t∈R

|P(n 1
2 (E[X2

i ] + E[Xi]
2 β

1− β
)−

1
2gn ≤ t)− ΦN(0,1)(t)|= O(n−

1
2 ).

2. When β = 1, denote F0(t) =
∫ t
−∞ exp(−z4/12)dz∫∞
−∞ exp(−z4/12)dz , t ∈ R, then

sup
t∈R

|P(n 1
4E[Xi]

−1gn ≤ t)− F0(t)|= O((log n)3n−
1
2 ).

3. When β > 1, denote gn,ℓ =
1
n

∑n
i=1Xi(Wi − πℓ), C+ = [0,∞) and C− = (−∞, 0), then

sup
t∈R

|P(n 1
2

(
E[X2

i ](1− π2ℓ ) + E[Xi]
2 β(1− π2ℓ )

1− β(1− π2ℓ )

)− 1
2
gn,ℓ ≤ t|m ∈ Cℓ)− ΦN(0,1)(t)|

= O(n−
1
2 ), t ∈ {−,+}.

Lemma SA-4 (Size-Dependent Temperature Berry-Esseen). Suppose Z is a standard Gaussian
random variable. (1) Suppose βn = 1 + cn−

1
2 , where c < 0 does not depend on n. Then

sup
t∈R

∣∣∣∣P(n
1
4gn ≤ t)− P(n−

1
4E[X2

i ]
1
2Z+ β

1
2
nE[Xi]Wc ≤ t)

∣∣∣∣ = O((log n)3n−
1
2 ),

where O(·) is up to a universal constant.

(2) Suppose βn = 1 + cn−
1
2 , where c > 0 does not depend on n. Then

sup
c∈R+

sup
t∈R

∣∣∣∣P(n
1
4gn ≤ t|m ∈ Ic,ℓ)− P(n−

1
4E[X2

i ]
1
2Z+ β

1
2
nE[Xi]Wc,n ≤ t|Wc,n ∈ Ic,ℓ)

∣∣∣∣

= O((log n)3n−
1
2 ),

with Ic,n,− = (−∞,Kc,n,−) and Ic,n,+ = (Kc,n,+,∞) such that E[Wc,n|Wc,n ∈ Ic,n,ℓ] = wc,n,ℓ for
ℓ ∈ {−,+}.

Lemma SA-5 (
√
n-sequence is knife-edge). (1) Suppose |βn − 1|= o(n−

1
2 ), then

sup
t∈R

∣∣∣∣P(n
1
4gn ≤ t)− P(E[Xi]W0 ≤ t)

∣∣∣∣ = o(1).
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(2) Suppose 1− βn ≫ n−
1
2 , then

sup
t∈R

∣∣∣∣P(V[gn]−
1
2gn ≤ t)− Φ(t)

∣∣∣∣ = o(1).

(3) Suppose βn − 1 ≫ n−
1
2 , then for ℓ ∈ {−,+},

sup
t∈R

∣∣∣∣P
(
V[gn|m ∈ Iℓ])−

1
2 (gn − E[gn|m ∈ Iℓ]) ≤ t

)
− Φ(t)

∣∣∣∣ = o(1),

where I+ = [0,∞) and I− = (−∞, 0).

SA-3 Pseudo-Likelihood Estimator for Curie-Weiss Regimes

Lemma SA-1 (No Consistent Variance Estimator). Suppose Assumptions 1,2,3 hold. Then there
is no consistent estimator of nV[τ̂n − τn].

The pseudo-likelihood estimator for Curie-Weiss regime with no external field is given by

β̂ = argmax
β

∑

i∈[n]
logPβ (Wi|W−i)

= argmax
β

∑

i∈[n]
− log

(
Wi tanh(βn

−1
∑

j ̸=iWj) + 1

2

)
.

Lemma SA-2 (Fixed Temperature Distribution Approximation). (1) If β ∈ [0, 1), then

β̂
d→ max

{
1− 1− β

χ2(1)
, 0

}
.

(2) If β = 1, then

n
1
2 (1− β̂)

d→ max

{
1

W2
0

− W2
0

3
, 0

}
.

(3) If β > 1, we define an unrestricted pseud-likelihood estimator,

β̂UR = argmax
β∈R

logPβ (Wi | W−i) =
∑

i∈[n]
− log

(
1

2
Wi tanh(βmi) +

1

2

)
.

Then

sup
t∈R

|P(n1/2(β̂UR − β) ≤ t|m ∈ Iℓ)− P((
1− β(1− π2ℓ )

1− π2ℓ
)1/2Z ≤ t)|= o(1).

Lemma SA-3 (Drifting Temperature Distribution Approximation). For any β ∈ [0, 1], define
cβ,n =

√
n(1− β), and suppose

P(zβ,n ≤ t) = P(Z+ n
1
4Wcβ,n ≤ t), t ∈ R.

then

sup
β∈[0,1]

sup
t∈R

|P(1− β̂ ≤ t)− P(min{max{z−2
β,n −

1

3n
z2β,n, 0}, 1} ≤ t)|= o(1).
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SA-4 Stochastic Linearization

Throughout this section, we prove under a more generic setting. We assume Wi = 2Ti − 1, and
(Wi)i∈[n] satisfies a Curie-Weiss model with a possibly non-zero external field, that is,

Assumption 1 (Curie-Weiss). Suppose W = (Wi)1≤i≤n are such that for some Cβ,h ∈ R,

P(W = w) = C−1
β,h exp

(
β

n

∑

1≤i<j≤n
WiWj + h

n∑

i=1

Wi

)
,

where Cβ,h is a normalizing constant.

Morever, for the ease of proof, we let gi to be the function such that

gi(x, y) = fi(
1

2
x+

1

2
,
1

2
y +

1

2
), x ∈ {−1, 1}, y ∈ [−1, 1].

We denote Mi =
∑

j ̸=iEijWi, Ni =
∑

j ̸=iEij . Then

gi(Ti,T−i) = fi(Ti,

∑
j ̸=iEijTi∑
j ̸=iEij

) = gi(Wi,
Mi

Ni
).

Define π = E[Wi], m = n−1
∑n

i=1Wi and for 1 ≤ i ≤ n, mi = n−1
∑

j ̸=iWj . Define the following
rates that will be used in the convergence analysis:

aβ,h =

{
n1/2, if β ̸= 1 or β = 1, h ̸= 0,

n3/4, if β = 1, h = 0,
rβ,h =

{
n1/2, if β ̸= 1 or β = 1, h ̸= 0,

n1/4, if β = 1, h = 0.

and

pβ,h =

{
1/2, if β ̸= 1 or β = 1, h ̸= 0,

1/4, if β = 1, h = 0,
ψβ,h(x) =

{
exp(x2)− 1, if β ̸= 1 or β = 1, h ̸= 0,

exp(x4)− 1, if β = 1, h = 0.

SA-4.1 The Unbiased Estimator

Denote pi = P(Wi = 1;W−i) = (exp (−2βmi − 2h) + 1)−1. We propose an unbiased estimator
given by

τ̂n,UB =
1

n

n∑

i=1

[
TiYi
pi

− (1− Ti)Yi
1− pi

]
.

Lemma SA-1 (Unbiased Estimator). τ̂n,UB is an unbiased estimator for τn in the sense that,

E[τ̂n,UB|E, (fi)i∈[n]] = τn.

We will show the followings have weak limits:

n−aβ,h

n∑

i=1

[
TiYi
pi

− (1− Ti)Yi
1− pi

− τn

]
.

6



W.l.o.g, we analyse the error for treated data, the error for control data follows in the same way.
First, decompose by

n−aβ,h

n∑

i=1

[
TiYi
pi

− (1− Ti)Yi
1− pi

]
= ∆1 +∆2,

∆1 = n−aβ,h

n∑

i=1

[
Ti
pi
Yi(1, π)−

1− Ti
1− pi

gi(−1, π)

]
,

∆2 = n−aβ,h

n∑

i=1

[
Ti
pi

(
gi

(
1,
Mi

Ni

)
− gi

(
1, π
))

− 1− Ti
1− pi

(
gi

(
− 1,

Mi

Ni

)
− gi

(
− 1, π

))]
.

Lemma SA-2. Suppose Assumption 1,2, and 3 hold. Then

∆1 − E[∆1|E, (fi)i∈[n]] = n−aβ,h

n∑

i=1

(gi(1, π)
1 + π

+
gi(−1, π)

1− π
− βd

)
(Wi − π)

+Oψ2,tc(
√

log nn−rβ,h),

where d = (1− π)E[gi(1, π)] + (1 + π)E[gi(−1, π)].

Now consider ∆2. Since Ti
pi

= Ti−pi
pi

+ 1, we have the decomposition,

∆2 =n
−aβ,h

n∑

i=1

Ti
pi

[
gi

(
1,
Mi

Ni

)
− gi (1, π)

]
= ∆2,1 +∆2,2 +∆2,3 (SA-2)

where

∆2,1 = n−aβ,h

n∑

i=1

g′i(1, π)
(
Mi

Ni
− π

)
,

∆2,2 = n−aβ,h

n∑

i=1

Ti − pi
pi

g′i (1, π)
(
Mi

Ni
− π

)
,

∆2,3 = n−aβ,h

n∑

i=1

TiY
′′
i (1, η∗i )
2pi

(
Mi

Ni
− π

)2

where η∗i is some random quantity between Mi
Ni

and π. Define bi =
∑

j ̸=i
Eij

Nj
Y ′
j (1, π). Then by

reordering the terms,

∆2,1 = n−aβ,h

n∑

i=1

bi (Wi − π) .

Lemma SA-3. Suppose Assumption 1,2,3 hold. Then condition on U such that A(U) ∈ A = {A ∈
Rn×n : mini∈[n]

∑
j ̸=iAij ≥ 32 log n},

∆2,2 = Oψ2,tc

(
log nmax

i∈[n]
E[Ni|U]−1/2

)
+Oψβ,γ ,tc(

√
log nn−rβ,h).

For the term ∆2,3, we further decompose it into two parts:

∆2,3 = ∆2,3,1 +∆2,3,2,
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where

∆2,3,1 = n−aβ,h

n∑

i=1

[
gi

(
1,
Mi

Ni

)
− gi (1, π)− g′i (1, π)

(
Mi

Ni
− π

)]
,

∆2,3,2 = n−aβ,h

n∑

i=1

1

2

Wi − E[Wi|W−i]
pi

[
gi

(
1,
Mi

Ni

)
− gi (1, π)− g′i (1, π)

(
Mi

Ni
− π

)]
.

Lemma SA-4. Suppose 1,2,3 hold. Then condition on U such that A(U) ∈ A = {A ∈ Rn×n :
mini∈[n]

∑
j ̸=iAij ≥ 32 log n},

∆2,3,1 − E[∆2,3,1|E, (fi)i∈[n]]
=Oψpβ,h/2

(n−rβ,h) +Oψβ,h,tc(max
i

E[Ni|U]−1/2) +Oψ1,tc(n
−1/2)

+Oψ2,tc(n
1
2
−aβ,h maxE[Ni|U]−1/2).

Lemma SA-5. Suppose 1,2,3 hold. If gi(1, ·) and gi(−1, ·) are 4-times continuously differentiable,
then condition on U such that A(U) ∈ A,

∆2,3,2 − E[∆2,3,2|E, (fi)i∈[n]]
=Oψpβ,h/2,tc((log n)

−1/pβ,hn−2rβ,h) +Oψ1,tc((log n)
−1/pβ,h(min

i
E[Ni|U])−1)

+Oψ1,tc

(
n1/2−aβ,h

(
maxi E[Ni|U]3

mini E[Ni|U]4

)1/2
)

+Oψ2/(p+1),tc

(
nrβ,h(min

i
E[Ni|U]−(p+1)/2)

)
.

SA-4.2 Hajek Estimator

Lemma SA-6. Suppose Assumption 1, 2 and 3 hold. Then

τ̂n − τ̂n,UB = −
(E[gi(1, Mi

Ni
)]

π + 1
+

E[gi(−1, Mi
Ni

)]

1− π

)
(1− β(1− π2))(m − π) +Oψ1(n

−2rβ,h).

SA-4.3 Stochastic Linearization

Lemma SA-7. Suppose Assumptions 1, 2, and 3 hold. Define

Ri =
gi(1,

Mi
Ni

)

1 + π
+
gi(−1, Mi

Ni
)

1− π
, Qi = E[

G(Ui, Uj)

E[G(Ui, Uj)|Uj ]
(g′j(1, π)− g′j(−1, π))|Ui].

Then,

sup
t∈R

|P(τ̂n − τn ≤ t)− P(
1

n

n∑

i=1

(Ri − E[Ri] +Qi)(Wi − π) ≤ t)| = O
( log n√

nρn
+ rn,β

)
,

where rn,β = 4
√
n
√
log n(nρn)

− p+1
2 if β = 1, h = 0; and

√
n log n(nρn)

− p+1
2 if β < 1 or h ̸= 0.

Lemma SA-8. Define Assumptions 1, 2, and 3 hold with h = 0, β ∈ [0, 1]. Define

Ri =
gi(1,

Mi
Ni

)

1 + π
+
gi(−1, Mi

Ni
)

1− π
, Qi = E[

G(Ui, Uj)

E[G(Ui, Uj)|Uj ]
(g′j(1, π)− g′j(−1, π))|Ui].

Then,

sup
β∈[0,1]

sup
t∈R

|P(τ̂n − τn ≤ t)− P(
1

n

n∑

i=1

(Ri − E[Ri] +Qi)(Wi − π) ≤ t)| = o(1).
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SA-5 Jacknife-Assisted Variance Estimation

Lemma SA-1. Suppose Assumptions 1,2,3,4 hold, and nρ3n → ∞ as n → ∞. Suppose the
non-parametric learner f̂ satisfies f̂(ℓ, ·) ∈ C2([0, 1]), and |f̂(ℓ, 12) − f(ℓ, 12)|= oP(1), |∂2f̂(ℓ, 12) −
∂2f(ℓ,

1
2)|= oP(1), for ℓ ∈ {0, 1}, where the rate in oP(·) does not depend on β. Suppose K̂n is the

jacknife estimator from Algorithm 2. Then

K̂n = E[(Ri − E[Ri] +Qi)
2] + oP(1),

where the rate in oP(1) also does not depend on β.

Here we give a local-polynomial based learner f̂ that satisfies requirements of Lemma SA-1
(hence Theorem 4 in the main paper.)

Lemma SA-2. Use a local polynomial estimator to fit the potential outcome functions: Take

f̂(1, x) := γ̂0 + γ̂1x,

(γ̂0, γ̂1) := argmin
γ0,γ1

n∑

i=1

(
Yi − γ0 − γ1

Mi

Ni

)2
Kh

(Mi

Ni

)
1(Ti = 1),

where Kh(·) = h−1K(·/h) where K is a kernel function, h is the optimal bandwidth. Then f̂(1, 0) =
f(1, 0) + oP(1), ∂2f̂(1, 0) = ∂2f(1, 0) + oP(1), the same for control group. Moreover, the rate of
convergence can be made not depending on β.

SA-6 Proof of Main Theorems

SA-6.1 Proof of Theorem 1

The conclusion follows from the stochastic linearization result in Lemma SA-6, and the Berry-Esseen
result for Curie-Weiss magnetization with independent multipliers in Lemma SA-3.

SA-6.2 Proof of Theorem 2

The conclusion follows from the stochastic linearization result in Lemma SA-6, and the (uniform in
β) Berry-Esseen result for Curie-Weiss magnetization with independent multipliers in Lemma SA-4.

SA-6.3 Proof of Theorem 3

The uniform approximation for
√
n(β̂n − 1) established in Lemma SA-3 implies

inf
β

Pβ(β ∈ I(α1)) ≥ inf
β

Pβ(
√
n(1− β) ≥ q) ≥ 1− α1 + oP(1).

where q is the α1 quantile of min{max{T−2
cβ,n,n

− T2
cβ,n,n

/(3n), 0}, 1}.
Then by a Bonferroni correction argument, the second step coverage can be lower bounded by

inf
β∈[0,1]

Pβ(τn ∈ Ĉ(α1, α2)) ≥ inf
β∈[0,1]

Pβ(τn ∈ Ĉ(α1, α2), β ∈ I(α1))− Pβ(β /∈ I(α1)).
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Observe that the event τn ∈ Ĉ(α1, α2) conincides with the event τ̂n − τn ∈ [infc∈I(α1) lawcβ (1 −
α2
2 ; ŝ, n), supc∈I(α1) lawcβ (1− α2

2 ; ŝ, n)], where ŝ = (K̂n, K̂
2
n). Hence

inf
β∈[0,1]

Pβ(τn ∈ Ĉ(α1, α2), β ∈ I(α1))

≥ inf
β∈[0,1]

Pβ(τ̂n − τn ∈ [lawcβ (1−
α2

2
; ŝ, n), lawcβ (1−

α2

2
; ŝ, n)], β ∈ I(α1))

≥ inf
β∈[0,1]

Pβ(τ̂n − τn ∈ [lawcβ (1−
α2

2
; ŝ, n), lawcβ (1−

α2

2
; ŝ, n)])− Pβ(β ∈ I(α1)).

Theorem 2 shows that the quantiles of the distributions of τ̂n−τn can be uniformly approximated by
quantiles from lawcβ,n , if κ1 and κ2 are correctly specified, and the confidence interval is conservative,
if we use upper boundds for κ1 and κ2. The conclusion then follows.

SA-6.4 Proof of Theorem 4

The conclusion follows from Theorem 3 and Lemma SA-1.

SA-7 Proofs

SA-7.1 Proofs for Section SA-2

SA-7.1.1 Proof of Lemma SA-2

Our proof is divided according to the different temperature regimes.

The High Temperature Regime.

We introduce the handy notation given by F (v) := −1
2v

2 + log cosh(
√
βv + h). For the high

temperature regime, we note that the term in the exponential can be expanded across its global
minimum v∗ (which satisfies the first order stationary point condition given by v∗ =

√
β tanh(

√
βv∗+

h)) by

F (v) = F (v∗) + F ′(v∗)(v − v∗) +
1

2
F (2)(v∗)(v − v∗)2 +O((v − v∗)3)

= F (v∗)− 1

2
(1− β sech2(

√
βv∗ + h))(v − v∗)2 +O((v − v∗)3).

Therefore, to obtain the limit of the expectation, we note that by the Laplace method given similar
to the proof of Lemma SA-3 and the definition of Vn := n−1/2Un:

E[Vn] =
∫
R v exp (−nF (v)) dv∫
R exp(−nF (v))dv = v∗(1 +O(n−1)).

Then, we note that for ℓ ∈ N, when h = 0 and β < 1 we use the Laplace method again to obtain
that for all ℓ ∈ N,

E
[
(Vn − E[Vn])2ℓ

]
=

∫
R(v − v∗)2ℓ exp(−n(F (v)− F (v∗)))dv∫

R exp(−n(F (v)− F (v∗)))dv
(1 +O(n−1))

=
1√
π

(
2

n(1− β sech2(
√
βv∗ + h))

)ℓ
Γ

(
2ℓ+ 1

2

)
(1 +O(n−1)).
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Then we can obtain that for all t ∈ R, we have

E[exp(t(Vn − E[Vn]))] =
∞∑

ℓ=0

tℓ

ℓ!
E[(Vn − E[Vn])ℓ] =

∞∑

ℓ=0

t2ℓ

(2ℓ)!
E[(Vn − E[Vn])2ℓ]

≤ exp

(
(1 + o(1))t2

2n(1− β sech2(
√
βv∗ + h))

)
,

which alternatively implies that

∥Un − E[Un]∥ψ2= n1/2∥Vn − E[Vn]∥ψ2≤ (1 + o(1))(1− β sech2(
√
βv∗ + h))

1
2 . (SA-3)

The Critical Temperature Regime.

Then we study the critical temperature regime with β = 1. Note that one has E[Un] = 0 and for
all ℓ ∈ N we have

F (v) = F (0) + F ′(0)v +
1

2
F (2)(0)v2 +

1

6
F (3)(0)v3 +

1

24
F (4)(0)v4 +O(v5)

= F (0) +
1

12
v4 +O(v5).

Then we can obtain that ℓ ∈ N,

E
[
V 2ℓ
n

]
=

∫
R v

2ℓ exp(−nF (v))dv∫
R exp(−nF (v))dv = (1 + o(1)) · 2ℓ− 1

2 · 3 ℓ
2
+ 1

4
Γ
(
ℓ
2 + 1

4

)

Γ(1/4)

≤ (1 + o(1))
1√
π

(
23/2 · 33/4Γ(3/4)
n1/2Γ(1/4)

)ℓ
Γ

(
2ℓ+ 1

2

)
.

And we immediately obtain that

E [exp(tVn)] =
∞∑

ℓ=0

tℓE[V2ℓ
n ]

Γ(1 + ℓ)
≤

∞∑

ℓ=0

1 + o(1)

Γ(1 + 2ℓ)

1√
π

(
21/2 · 33/4

√
2Γ(3/4)

n1/2Γ(1/4)

)ℓ
Γ

(
2ℓ+ 1

2

)
tℓ

≤ exp

(
1 + o(1)

2
t2
(
23/2 · 33/4Γ(3/4)
n1/2Γ(1/4)

))
,

which finally leads to

∥Vn∥ψ2≤ (1 + o(1))

√
21/2 · 33/4Γ(3/4)
n1/2Γ(1/4)

. (SA-4)

The Low Temperature Regime.

We shall note that at the low temperature regime the function F (v) has two symmetric global
minima v1 > 0 > v2, satisfying

F ′(v1) = F ′(v2) = 0 ⇒ vℓ =
√
β tanh(

√
βvℓ + h) for ℓ ∈ {1, 2}.

Then we can check that by the Laplace method, for all t > 0 (following the path given by the high
temperature regime) we have

E[exp(t(Vn − E[Vn|Vn > 0]))|Vn > 0] =

∫
[0,∞) exp (t(v − v1)− nF (v)) dv

∫
[0,∞) exp(−nF (v))dv

= exp

(
(1 + o(1))t2

2n(1−√
β sech2(

√
βv1))

)
.
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Then we similarly obtain that E[exp(t(Vn − E[Vn|Vn < 0]))|Vn < 0] = exp
(

(1+o(1))t2

2n(1−√
β sech2(

√
βv1))

)
.

Hence we obtain that

∥Vn − E[Vn|Vn < 0]|Vn < 0∥ψ2 = ∥Vn − E[Vn|Vn > 0]|Vn > 0∥ψ2

≤ (1 + o(1))(1− β sech2(
√
βv1))

1
2 . (SA-5)

The Drifting Sequence Case.

Then we consider the drifting case.
First consider β = 1− cn−

1
2 with c ∈ R+ and β ≥ 0. We will show that for any fixed n, ∥Wn∥ψ2

is increasing in β when β ∈ [0, 1]. This will imply that in the drifting case, ∥Wn∥ψ2 will be no larger
than its value at the critical regime.

For a comparison argument, denote Fβ(v) = −1
2v

2+log cosh(
√
βv). Let 0 < β1 < β2 ≤ 1. Then

exp(nFβ2(v))

exp(nFβ1(v))
= exp(n log cosh(

√
β2v)− n log cosh(

√
β1v)),

where

d

dv

cosh(
√
β2v)

cosh(
√
β1v)

=
(
√
β2 −

√
β1) sinh((

√
β2 −

√
β1)v)

cosh2(
√
β1v)

> 0.

Hence for any n ∈ N and t > 0,

Pβ(|Wn|≥ t) = 2

∫∞
t exp(nFβ(v))dv∫∞
0 exp(nFβ(v))dv

increases as β ∈ [0, 1] increases. This shows that ∥Wn∥ψ2 increases as β ∈ [0, 1] increases. Together
with Equation (SA-4), we have under βn = 1− c√

n
, 0 ≤ c ≤ √

n,

∥Vn∥ψ2 ≤ (1 + o(1))

√
21/2 · 33/4Γ(3/4)
n1/2Γ(1/4)

,

where o(·) is by an absolute constant.
Then we consider β = 1+ cn−

1
2 . We shall note that under this situation it is not hard to check

that

E[exp(tVn)] =
1

2
(E[exp(tVn)|Vn > 0] + E[exp(tVn)|Vn < 0])

=
1

2
(E[exp(t(Vn − v+))|Vn > 0] exp(tv+) + E[exp(t(Vn − v−))|Vn < 0] exp(tv−)) .

Then, under this case we have by Taylor expanding F at 0 and the fact that supv∈R|F (5)(v)|<∞,

fVn(v) ∝
∑

l∈{−,+}
1(v ∈ Cl) exp

(
− cn

1
2 (v − vl)

2 −
√
3c

3
n

3
4 (v − vl)

3 − 1

12
n(v − vl)

4 −O(n(v − vl)
5)

)
.

Before we start to upper bound the moments, we first use the fact that v+ = O(n−1/4) to obtain
that

∫

(−v+,0)
v2ℓ exp

(
−
√
3cv3

)
dv ≤ n−

1
4 v2ℓ+ exp(−

√
3cn−1/4) = O

(
n−1/4−ℓ/2

)
.

12



Then we obtain that

E[(Vn − v+)
2ℓ|Vn > 0] = n−

ℓ
2

∫
(−v+,+∞) v

2ℓ exp
(
−cv2 −

√
3c
3 v3 − 1

12v
4
)
dv

∫
(−v+,+∞) exp

(
−cv2 −

√
3c
3 v3 − 1

12v
4
)
dv

(1 + o(1))

≤ n−
ℓ
2 (1 + o(1))

∫
R v

2ℓ exp(−3cv2)dv +
∫
(−v+,+∞) v

2ℓ exp(−
√
3cv3)dv +

∫
R v

2ℓ exp(−1
4v

4)dv
∫
(−v+,+∞) exp

(
−cv2 −

√
3c
3 v3 − 1

12v
4
)
dv

= n−
ℓ
2 (1 + o(1))

∫
R v

2ℓ exp(−3cv2)dv +
∫
R+ v

2ℓ exp(−
√
3cv3)dv +

∫
R v

2ℓ exp(−1
4v

4)dv
∫
(−v+,+∞) exp

(
−cv2 −

√
3c
3 v3 − 1

12v
4
)
dv

+O(n−1/4−ℓ/2)

= n−
ℓ
2 (1 + o(1))

(
C3

(
1

3c

)ℓ
Γ

(
ℓ+

1

2

)
+ C4(3c)

− ℓ
3Γ

(
2ℓ

3
+

1

3

)
+ C52

ℓΓ

(
ℓ

2
+

1

4

))
,

with C3 :=
(3c)−1/2

3
∫
(−v+,+∞) exp

(
−cv2−

√
3c
3
v3− 1

12
v4

)
dv

, C4 =
1

9
∫
(−v+,+∞) exp

(
−cv2−

√
3c
3
v3− 1

12
v4

)
dv

,

and C5 =
2−3/2

∫
(−v+,+∞) exp

(
−cv2−

√
3c
3
v3− 1

12
v4

)
dv

. Therefore, we can simply use the definition of the m.g.f.

to obtain that

E[exp(t2(Vn − v+)
2)|Vn > 0] =

∞∑

ℓ=0

t2ℓE[(Vn − v+)
2ℓ|Vn > 0]

Γ(2ℓ+ 1)

≤
∞∑

ℓ=0

(1 + o(1))n−ℓ/2t2ℓ

Γ(2ℓ+ 1)

(
C3

(
1

3c

)ℓ
Γ

(
ℓ+

1

2

)
+ C4(3c)

− ℓ
3Γ

(
2ℓ

3
+

1

3

)
+ C52

ℓΓ

(
ℓ

2
+

1

4

))

≤
∞∑

ℓ=0

(1 + o(1))n−ℓ/2t2ℓ

Γ(2ℓ+ 1)

(
C3(3c)

−1Γ

(
3

2

)
+ C4(3c)

−1/3Γ(1) + 2C5Γ

(
3

4

))ℓ
Γ

(
2ℓ+ 1

2

)

≤ (1− 2t2n1/2/σ2)−
1
2 , σ :=

(
C3(3c)

−1Γ

(
3

2

)
+ C4(3c)

−1/3Γ(1) + 2C5Γ

(
3

4

)) 1
2

.

Then we use the fact that E[Vn|Vn > 0] = v+ to obtain that (here we use proposition 2.5.2 in [7])

E[exp(t(Vn − v+))|Vn > 0] ≤ exp
(
18e2n−1/2σ2t2

)
.

Similarly one obtains that E[exp(t(Vn − v−))|Vn < 0] ≤ exp(18e2n−1/2σ2t2). And hence

E[exp(tVn)] ≤
1

2
(exp(tv+) + exp(−tv+)) exp(18e2n−1/2σ2t2) ≤ exp

(
1

2
t2v2+

)
.

SA-7.1.2 Proof for Lemma SA-3 High Temperature

Throughout the proof, we denote by C an absolute constant, and K a constant that only depends on
the distribution of Xi.

Take Un to be a random variable with density

fUn(u) =

exp

(
−1

2u
2 + n log cosh

(√
β
nu

))

∫∞
−∞ exp

(
−1

2v
2 + n log cosh

(√
β
nv

))
dv

, u ∈ R. (SA-6)
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By Lemma SA-3, condition on Un, Wi are i.i.d Bernouli with

P(Wi = 1|Un) =
1

2
(tanh(

√
β

n
Un) + 1).

We characterize the conditional mean and variance as

e(Un) = E [XiWi|Un] = E [Xi] tanh

(√
β

n
Un

)
,

v(Un) = V [XiWi|Un] = E
[
X2
i

]
− E [Xi]

2 tanh2
(√

β

n
Un

)
. (SA-7)

Moreover, we have E
[∣∣X3

i (Wi − π)3
∣∣ |Un

]
≤ E

[
|Xi|3

]
.

Step 1: Conditional Berry-Esseen.

Apply Berry-Esseen Theorem conditional on Un,

sup
u∈R

sup
t∈R

∣∣∣∣∣P (gn ≤ t|Un = u)− Φ

(
t−√

nE [XiWi|Un = u]

V [XiWi|Un = u]1/2

)∣∣∣∣∣ ≤ C
E
[
|Xi|3

]

v(Un)
n−1/2.

Since v(Un) ≥ V[Xi] + E[Xi]
2 sech2(

√
β/nUn), and be Lemma SA-2, ∥Un∥ψ1 ≤ Cn1/4. Hence

dKS

(
gn, v(Un)

1/2Z+
√
ne(Un)

)

=sup
t∈R

∣∣∣∣
∫ ∞

−∞
(P (gn ≤ t|Un = u)− Φ

(
t−√

ne(Un)

v(Un)1/2

)
)fUn(u)du

∣∣∣∣

≤Kn−1/2.

Step 2: Approximation for Un.

Take U ∼ N(0, (1− β)−1) independent to Z. Consider Vn = n−1/2Un. Then

fVn(v) ∝ exp

(
−1

2
nv2 + n log cosh

(√
βv
))

=: exp (−nϕ(v)) ,

where ϕ(v) = −1
2v

2 + log cosh(
√
βv). And ϕ is maximized at 0 with ϕ′′(0) = 1− β > 0.

We will approximate the integral of fVn by Laplace method. By Equation (5.1.21) in [2],

∫ ∞

−∞
exp (−nϕ(v)) dv =

√
2π

nϕ′′(0)
exp (−nϕ(0)) +O

(
exp(−nϕ(0))

n3/2

)

=

√
2π

nϕ′′(0)
exp (−nϕ(0))

[
1 +O(n−1)

]
,

where the O(n−1) term only depends on n and ϕ. It follows that

fVn(v) =

√
nϕ′′(0)
2π

exp (−nϕ(v) + nϕ(0))
[
1 +O(n−1)

]
.

14



Then by a change of variable and the fact that O(n−1) term does not depend on v,

fUn(u) =

√
ϕ′′(0)
2π

exp
(
−nϕ(n−1/2u) + nϕ(0)

)
[1 +O(n−1)]. (SA-8)

Taylor expanding ϕ at 0, we get

−nϕ(n−1/2u) + nϕ(0) = −ϕ
′′(0)
2

u2 − tanh(
√
βv∗ + h) sech2(

√
βv∗)

u3

3
√
n

(SA-9)

= −1

2
(1− β) (u2 − tanh(

√
βv∗) sech2(

√
βv∗)

u3

3
√
n
, (SA-10)

where v∗ is some quantity between 0 and n−1/2u. Then

dTV(Un,U) =

∫ ∞

−∞
|fUn(u)− fU (u)| du

≤
∫ ∞

−∞

√
ϕ′′(0)
2π

exp

(
−1

2
(1− β)u2

)

·
[
exp

(
− tanh(

√
βv∗(u)) sech2(

√
βv∗(u))

u3

3
√
n

)
− 1

]
du
[
1 +O(n−1)

]
,

where v∗(u) is some random quantity between 0 and n−1/2u. We will show that we can restrict
the analysis to the region [−cβ

√
log n, cβ

√
log n], which is where the bulk of mass lies, with cβ =

(1 − β)−1/2. Since U ∼ N(0, (1 − β)−1), P
(
|U| ≥ cβ

√
log n

)
≤ n−1. By Lemma SA-2, we also

have P
(
|Un| ≥ c′β

√
log n

)
≤ n−1, where c′β is a constant that only depends on β. Take dβ =

max{cβ, cβ′}, and use the boundedness of tanh and sech and the Lipschitzness of exp when restricted
to [−1, 1], we have

dTV(Un,U) ≤
∫ dβ

√
logn

−dβ
√
logn

√
ϕ′′(0)
2π

exp

(
−1

2
(1− β)u2

)

·
[
exp

(
− tanh(

√
βv∗(u)) sech2(

√
βv∗(u))

u3

3
√
n

)
− 1

]
du
[
1 +O(n−1)

]
+O(n−1)

≤
∫ dβ

√
logn

−dβ
√
logn

√
ϕ′′(0)
2π

exp

(
−1

2
(1− β)u2

)
c2
|u|3√
n
du
[
1 +O(n−1)

]
+O(n−1)

=O(n−1/2).

Step 3: Data Processing Inequality.

We can use data processing inequality to get

dKS

(
v(Un)

1/2Z+
√
ne(Un), v(U)

1/2Z+
√
ne(U)

)
≤ dTV (Un,U) = O(n−1/2).

Step 4: Stabilization of Variance.

15



By independence between U and Z, we have

dKS

(
v(U)1/2Z+

√
ne(U)),E[v(U)]1/2Z +

√
ne(U)

)

=sup
t∈R

E
[
Φ

(
t−√

ne(U)

v(U)1/2

)
− Φ

(
t−√

ne(U)

E[v(U)]1/2

)]

≤ sup
t∈R

E
[∣∣∣∣ϕ

(
t−√

ne(U)

v∗(U)1/2

)
(t−√

ne(U))
(
v(U)−1/2 − E[v(U)]−1/2

)∣∣∣∣
]
,

where v∗(U) is some quantity between E[v(U)] and v(U), and by Equation SA-7, v∗(U) ≥ C−1V[Xi].
It follows from boundedness of v(U) and Lipshitzness of tanh in the expression of v(U) that

dKS

(
v(U)1/2Z +

√
ne(U)),E[v(U)]1/2Z +

√
ne(U)

)

≤ sup
t∈R

sup
u∈R

∣∣∣∣∣∣
ϕ


 t−

√
ne(u)√

2E[X2
i ]


 (t−√

ne(u))

∣∣∣∣∣∣
1

2
√
C−1V[Xi]

E [|v(U)− E[v(U)]|]

=O(n−1/2).

Step 5: Gaussian Approximation for
√
ne(U).

In this step, we will show that
√
ne(U) can be well-approximated by

√
βU and hence

√
ngn can

be well-approximated by a Gaussian.

dKS

(
E[v(U)]1/2Z+

√
ne(U),E[v(U)]1/2Z+

√
βU
)

≤ sup
t∈R

E
[
Φ

(
t−√

ne(U)

E[v(U)]1/2

)
− Φ

(
t−√

βU

E[v(U)]1/2

)]

≤ ∥ϕ∥∞
E[v(U)1/2]

E
[∣∣∣
√
ne(U)−

√
βU
∣∣∣
]
.

Taylor expanding tanh at 0,

√
ne(U) = E[Xi]

√
n tanh

(√
β

n
U

)

= E[Xi]
√
βU+O

(
β√
n
U2

)
+O(n−1/2)

= E[Xi]
√
βU+O

(
β√
n
U2

)
+O(n−1/2),

It follows that E
[∣∣√ne(U)−√

βU
∣∣] = O(n−1/2) and hence

dKS

(
E[v(U)]1/2Z+

√
ne(U),E[v(U)]1/2Z+ E[Xi]

√
βU
)
= O(n−1/2).

Recall U ∼ N(0, (1− β)−1), hence E[Xi]
√
βU ∼ N(0,E[Xi]

2 β
1−β ). Moreover,

E[v(U)] = E[E[X2
i ]E[W 2

i |U]]− E[E[Xi]
2E[Wi|U]2]

= E[X2
i ]− E[Xi]

2E[Wi|U]2

= E[X2
i ] +O(n−1/2),
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where the last line is because E[Wi|U] = tanh(
√
β/nU) and U is sub-Gaussian. Since Z |= U,

dKS

(
E[v(U)]1/2Z+ E[Xi]

√
βU,N(0,E[X2

i ] + E[Xi]
2 β

1− β

)
= O(n−1/2).

Combining the previous five steps, we get

dKS

(√
ngn, N

(
0,E[X2

i ] + E[Xi]
2 β

1− β

))
= O(n−1/2).

SA-7.1.3 Proof for Lemma SA-3 Critical Temperature

Throughout the proof, we denote by C an absolute constant, and K a constant that only depends on
the distribution of Xi. The proofs for the critical temperature case will have a similar structure as
the proof for the high temperature case, based the same Un defined in Equation (SA-6).

Step 1: Conditional Berry-Esseen.

The same argument as in the high-temperature case gives

dKS

(
gn, v(Un)

1/2Z+
√
ne(Un)

)
≤ Kn−1/2.

Step 2: Approximation for Un.

Take W to be a random variable with density function

fW(z) =

√
2

31/4Γ(14)
exp

(
− 1

12
z4
)
, z ∈ R,

independent to Z. Take Wn = n−1/4Un and Vn = n−1/2Un. Again fVn(v) ∝ exp(−nϕ(v)), where
ϕ(v) := −1

2v
2 + log cosh(v). In particular, ϕ(v)(0) = 0 for all 0 ≤ v ≤ 3, and ϕ(4)(0) = −2 < 0,

ϕ(5)(0) = 0, ϕ(6)(0) = 16 > 0. Example 5.2.1 in [2] leads to

fVn(v) = n
1
4

√
2

3
1
4Γ(14)

exp(nϕ(v)− nϕ(0))(1 + o(1)),

which implies fWn(w) = fW (w)(1 + o(1)). Results in [2] do not give a rate, however. We will use a
more cumbersome approach to obtain a slightly sub-optimal rate.

By a change of variable, fWn(w) =
hn(w)∫∞

−∞ hn(u)du
, where hn can be written as

hn(w) = exp

(
−
√
n

2
w2 + n log cosh

(
n−

1
4w
))

= exp

(
− 1

12
w4 + g(w)n−

1
2w6

)
.

The last equality follows from Taylor expanding the term in exp(·) at w = 0, and g is some bounded
function.

∫ 10
√
logn

−10
√
logn

hn(w)dw = In(1 +O((log n)3n−
1
2 )), In :=

∫ 10
√
logn

−10
√
logn

exp

(
− 1

12
w4

)
dw

17



Moreover,
∫
[−10

√
logn,10

√
logn]c hn(w)dw = O(n−1/2) = In[1 + O(n−

1
2 )]. Hence for denominator, we

have
∫∞
−∞ hn(w)dw = In[1 +O((log n)3n−

1
2 )]. It follows that

dTV(Wn,W)

≲
∫ 10

√
logn

−10
√
logn

I−1
n exp

(
− 1

12
w4

)
n−

1
2w6dw +

∫ 10
√
logn

−10
√
logn

I−1
n O((log n)3n−

1
2 )dw

+ P (|Wn|≥ 10
√

log n) + P(|W|≥ 10
√

log n)

=O((log n)3n−
1
2 ).

Step 3: Data Processing Inequality.

We can use data processing inequality to get

dKS

(
v(Un)

1/2Z+
√
ne(Un), v(n

1/4W)1/2Z+
√
ne(n1/4W)

)
≤ dTV (Wn,W) = O(n−1/2).

Step 4: Non-Gaussian Approximation for n
1
4 e(n

1
4W)

n1/4e(n1/4W)) = E[Xi]n
1
4 tanh

(
n−

1
4W
)
= E[Xi]

[
W −O

(
W2

3
√
n

)]
,

where we have use the fact that tanh(2)(0) = 0. Hence there exists C > 0 such that for n large
enough, for any t > 0,

P
(
E[Xi]

[
W + C

W2

√
n

]
≤ t

)
≤ P

(
n1/4e(n1/4W)) ≤ t

)
≤ P

(
E[Xi]

[
W − C

W2

√
n

]
≤ t

)
. (0)

We have showed that there exists c > 0 such that

P(|W|≥ c
√

log n) ≤ n−1/2, (1)

in which case W2/
√
n ≤ 1 for large enough n. Hence for large enough n if t/E[Xi] > c

√
log n + 1,

then

P
(
W + C

W2

√
n
≤ t

E[Xi]
, |W|≤ c

√
log n

)
− P

(
W ≤ t

E[Xi]
, |W|≤ c

√
log n

)
= 0. (2)

If 0 < t/E[Xi] < c
√
log n+ 1, then

∣∣∣∣P
(
W +

W2

√
n
≤ t

E[Xi]
, |W|≤ c

√
log n

)
− P

(
W ≤ t

E[Xi]
, |W|≤ c

√
log n

)∣∣∣∣

≤P

(
t

E[Xi]
≤ W ≤ 1−

√
1− 4n−1/2t/E[Xi]

2n−1/2
, |W|≤ c

√
log n

)
.

Now we study g(x;α) = (1 −
√
1− 4xα)/(2x), x > 0. Then supα≤ 1

4
sup0≤x≤ 1

2
|θ′(x;α)|≤ 2 and

g(0;α) = α. Since for large enough n, 0 < t/E[Xi] < c
√
log n+ 1 ≤ 1

4 and 0 ≤ n−1/2 ≤ 1
2 , we have

1−
√

1−4n−1/2t/E[Xi]

2n−1/2 ≤ t/E[Xi] + 2n−1/2. Hence if 0 < t/E[Xi] < c
√
log n+ 1,

∣∣∣∣P
(
W +

W2

√
n
≤ t

E[Xi]
, |W|≤ c

√
log n

)
− P

(
W ≤ t

E[Xi]
, |W|≤ c

√
log n

)∣∣∣∣ = O(n−1/2). (3)
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Combining (1), (2), (3),

sup
t>0

∣∣∣∣P
(
W +

W2

√
n
≤ t

E[Xi]

)
− P

(
W ≤ t

E[Xi]

)∣∣∣∣ = O(n−1/2).

By similar argument, we can show

sup
t>0

∣∣∣∣P
(
W − W2

√
n
≤ t

E[Xi]

)
− P

(
W ≤ t

E[Xi]

)∣∣∣∣ = O(n−1/2).

Noticing that W and −W have the same distribution, the above two inequalities also hold for t ≤ 0.
Hence it follows from (0) that

dKS

(
n1/4e(n1/4W)),E[Xi]W

)
= O(n−1/2).

Step 5: Vanishing Variance Term. Denote by fW+n−1/4Z the density of W + n−1/4Z. Then

fW+n−1/4Z(y) =

∫ ∞

−∞

√
2

31/4Γ(14)
exp

(
− 1

12
(y − x)4

)
exp(−√

nx2/2)√
2πn−1/2

dx.

We will use Laplace method to show fW+n−1/4Z is close to fW. However, to get uniformity over
y, we need to work harder than in the high temperature case. Define φ(x) = x2/2 and gy(t) =
exp(−(t− y)4/12). Consider

Iy,+(λ) =

∫ ∞

0
gy(t) exp(−λφ(t))dt, Iy,−(λ) =

∫ 0

−∞
gy(t) exp(−λφ(t))dt.

Following Section 5.1 in [2], take τ > 0 such that φ(t) = τ , by a change of variable,

Iy,+(λ) = exp(−λφ(0))
∫ ∞

0

[
gy(t)

φ′(t)

∣∣∣∣
t=φ−1(τ)

]
exp(−λτ)dτ =

∫ ∞

0

exp(−(
√
2τ − y)4/12)√
2τ

exp(−λτ)dτ.

To get rate of convergence uniformly in y, we follow the proof of Watson’s Lemma but consider only
up to first order term. Taylor expanding x 7→ exp(−x4)/12 up to first order at y, we have

exp(−(
√
2τ − y)4/12)√
2τ

=
exp(−y4/12)√

2τ
+

1

3
exp(−y4/12)y3 + hy(τ

∗)
2

√
2τ ,

where τ∗ is some quantity between 0 and
√
2τ and

hy(u) = − exp(−(u− y)4/12)(u− y)2 +
1

9
exp(−(u− y)4/12)(u− y)6.

In particular, we have supy∈R supu∈R|hy(u)|< C for some absolute constant C. Then

sup
y∈R

∣∣∣∣
∫ ∞

0

hy(τ
∗)

2

√
2τ exp(−λτ)dτ

∣∣∣∣ ≤
C√
2
Γ

(
3

2

)
λ−3/2, ∀λ > 0.

Evaluating the first two terms, we get

sup
y∈R

∣∣∣∣Iy,+(λ)−
√

π

2λ
exp(−y4/12)−

∫ ∞

0

1

3
exp(−y4/12)y3 exp(−λτ)dτ

∣∣∣∣ ≤
C√
2
Γ

(
3

2

)
λ−3/2,∀λ > 0.
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Similarly, for Iy,−, change of variable by taking τ < 0 such that φ(t) = τ , we have

sup
y∈R

∣∣∣∣Iy,−(λ)−
√

π

2λ
exp(−y4/12) +

∫ ∞

0

1

3
exp(−y4/12)y3 exp(−λτ)dτ

∣∣∣∣ ≤
C√
2
Γ

(
3

2

)
λ−3/2,∀λ > 0.

Combining the two parts, we get

sup
y∈R

∣∣∣∣
∫ ∞

−∞
gy(t) exp(−λφ(t))dt−

√
2π

λ
exp(−y4/12)

∣∣∣∣ ≤ C
√
2Γ

(
3

2

)
λ−3/2, ∀λ > 0.

Now take λ =
√
n and multiply both sides by n1/4

31/4Γ( 1
4
)
√
π
, we get

sup
y∈R

∣∣∣∣fW+n−1/4Z(y)−
√
2

31/4Γ(14)
exp(−y4/12)

∣∣∣∣ ≤ C

√
2Γ(32)

31/4Γ(14)
√
π
n−1/2.

By a truncation argument, we have

dKS(W + n−1/4Z,W) ≤ dTV(W + n−1/4Z,W)

=

∫ √
logn

−√
logn

|fW+n−1/4Z(y)− fW(y)|dy + P(|W + n−1/4Z|≥
√

log n)

+ P(|W|≥
√

log n)

≤ C
√
n−1 log n.

Together with the fact that

n−1/4v(n1/4W) = n−1/4(E[X2
i ]− E[Xi]

2 tanh2(
√
βn−1/4W))1/2

= n−1/4E[X2
i ]

1/2(1 +Oψ2(n
−1/4)),

we know

dKS(n
−1/4v(n1/4W)1/2Z+ n1/4e(n1/4W),W) = O(

√
log nn−1/2).

Putting together all previous steps, we have

dKS(n
1/4gn,E[Xi]W) = O((log n)3n−1/2).

SA-7.1.4 Proof for Lemma SA-3 Low Temperature

Throughout the proof, we denote by C an absolute constant, and K a constant that only depends
on the distribution of Xi. The proofs are based on essentially the same argument as in the high
temperature case.

Instead of using sub-Gaussianity of Un, here we use Un is sub-Gaussian condition on Un ∈ Iℓ,
ℓ ∈ {−,+}. In particular, the previous step 2 by:

Step 2: Approximation for Un.

In case β > 1, ϕ(v) = 1
2v

2 − log(cosh(
√
βv)) has two global minimum v+ and v−, which are the

two solutions of v −√
β tanh(

√
βv) = 0. We want to show ϕ(2)(v+) = ϕ(2)(v−) = 1 − β + v2+ > 0.
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It sufffices to show v+ >
√
β − 1. Since ϕ′(v) < 0 for v ∈ (0, v+) and ϕ′(v) > 0 for v ∈ (v+,∞), it

suffices to show ϕ′(
√
β − 1) < 0. But

ϕ′(
√
β − 1) < 0 ⇔

√
β − 1−

√
β tanh(

√
β(β − 1)) < 0 ⇔ β > 1.

Hence ϕ(2)(v+) = ϕ(2)(v−) > 0. Observe that on I− = (−∞, 0) and I+ = (0,∞) respectively, the
absolute minimum of ϕ occurs at v− and v+, and ϕ′ is non-zero on I− and I+ except at v− and v+.
Hence we can apply Laplace method (Equation 5.1.21 in [2]) sperarately on I− and I+ to get

∫ 0

−∞
exp(−nϕ(v))dv =

√
2π

nϕ(2)(v−)
exp(−nϕ(v−))(1 +O(n−1)),

∫ ∞

0
exp(−nϕ(v))dv =

√
2π

nϕ(2)(v+)
exp(−nϕ(v+))(1 +O(n−1)).

It follows from the definition of fVn and a change of variable that the density of Un =
√
nVn can

be approximated by

fUn(u) =
∑

l=+,−
1(u ∈ Cl)

√
ϕ(2)(v−)

8π
exp(−nϕ(n−1/2u) + nϕ(n−1/2ul))(1 +O(n−1)),

where ul =
√
nvl, l ∈ {+,−}. Since P(Un ∈ I+) = P(Un ∈ I−) = 1

2 , condition on Un ∈ I+,

fUn|Un∈I+(u) =

√
ϕ(2)(v+)

2π
exp(−nϕ(n−1/2u) + nϕ(n−1/2u+))(1 +O(n−1)).

It then follows from Equation SA-9 that if we define U+ to be a random variable with density

fU+(u) =

√
1− β + v2+

2π
exp(−(1− β + v2+)(u− u+)

2/2),

then by Taylor expanding ϕ at v+ = n−1/2u+ and a similar argument as in the proof for high
temperature case,

dTV(Un|Un ∈ I+,U+) = O(n−1/2).

The rest follows from the same argument as in the proof for high temperature case and is sub-
Gaussianity of Un condition on Un ∈ Iℓ, ℓ ∈ {−,+}.

SA-7.1.5 Proof for Lemma SA-4 Drifting from High Temperature

Throughout the proof, we denote by C an absolute constant, and K a constant that only depends on
the distribution of Xi.

Let Un(c), e(Un(c)), v(Un(c)) be the latent variable, conditional mean, and conditional variance
as previously defined when βn = 1 + cn−

1
2 , c < 0. For notational simplicity, we abbreviate the c,

and call them Un, e(Un), v(Un) respectively. By Lemma SA-2, ∥Un∥ψ2 ≤ Cn1/4.

Step 1: Conditional Berry-Esseen.
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Apply Berry-Esseen Theorem conditional on Un in the same way as in the high temperature
case, we get

dKS

(
gn, v(Un)

1/2Z+
√
ne(Un)

)
≤ Kn−1/2.

Step 2: Non-Normal Approximation for n−
1
4Un.

Consider Wn = n−1/4Un. Then fWn(w) = In(c)
−1hn(w), with In(c) =

∫∞
−∞ hn(w)dw, and

hn(w) = exp

(
−
√
n

2
w2 + n log cosh

(
n−

1
4

√
βnw

))
= exp

(
− c
2
w2 − β2n

12
w4 + g(w)β3nn

− 1
2w6

)
,

where by smoothness of log(cosh(·)), ∥θ∥∞ ≤ K. Then
∫ C

√
logn

−C
√
logn

hn(w)dw =

∫ C
√
logn

−C
√
logn

exp(− c
2
w2 − β2n

12
w4)dw[1 +O(C6(log n)3n−

1
2 )] (SA-11)

= I(c)[1 +O(C6(log n)3n−
1
2 )]. (SA-12)

Moreover, by a change of variable and the fact that βn ≤ 1,

In(c) :=

∫ ∞

−∞
hn(w)dw = n−

1
4

∫ ∞

−∞
exp

(
− n

(v2
2

− log cosh(
√
βnv)

))
dv

≤ n−
1
4

∫ ∞

−∞
exp

(
− n

(v2
2

− log cosh(
√
v)
))
dv ≤ C.

Since ∥Wn(c)∥ψ2 ≤ C, In(c)−1
∫
(−C

√
logn,C

√
logn)c hn(w)dw ≤ Cn−1/2. It follows that

∫

(−C
√
logn,C

√
logn)c

hn(w)dw ≤ Cn−1/2. (SA-13)

Combining Equation SA-11 and SA-13, we have In(c) = I(c)[1 + O(C6(log n)3n−1/2)]. It follows
that

dTV(Wn,W)

≤
∫ C

√
logn

−C
√
logn

∣∣∣hn(w)
In(c)

− h(w)

I(c)

∣∣∣dw + P(|Wn|≥ C
√

log n) + P(|W|≥ C
√

log n)

≤
∫ C

√
logn

−C
√
logn

∣∣∣hn(w)− h(w)

I(c)

∣∣∣+ hn(w)
∣∣∣ 1

I(c)
− 1

In(c)

∣∣∣dw +O(n−
1
2 )

≤
∫ C

√
logn

−C
√
logn

exp
(
− c

2
w2 − β2n

12
w4
) w6

√
nI(c)

dw +

∫ C
√
logn

−C
√
logn

1

I(c)
O(C6(log n)3n−

1
2 )dw +O(n−

1
2 )

≤C(log n)3n−1/2.

Step 3: A Reduction through TV-distance Inequality.

Since Z |= (Un,Wn), we can use data processing inequality to get

dKS

(
n−

1
4 v(Un)

1
2Z+ n

1
4 e(Un), n

− 1
4 v(n

1
4W)

1
2Z+ n

1
4 e(n

1
4W)

)
≤ dTV (Wn,W)

≤ C(log n)3n−1/2.
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Step 4: Non-Gaussian Approximation for n
1
4 e(n

1
4W).

This is essentially the same as the proof for step 4 from the critical temperature case in
Lemma SA-3.

dKS

(
n1/4e(n1/4W),E[Xi]W

)
≤ K

log n√
n
.

Step 5: Stabilization of Variance.

Using the same argument as Step 4 in the high temperature case for Lemma SA-3, and ∥W∥ ≤ K,

dKS(n
− 1

4 v(n
1
4W)

1
2Z+ n

1
4 e(n

1
4W), n−

1
4E[X2

i ]
1
2Z+ E[Xi]W)) ≤ K

log n√
n
.

The conclusion then follows from putting together the previous five steps.

SA-7.1.6 Proof for Lemma SA-4 Drifting from Low Temperature

Consider the same Un defined in Equation (SA-6). Recall ϕ(v) = v2

2 − log cosh(
√
βnv), ϕ′(v) =

v − √
βn tanh(

√
βnv), ϕ(2)(v) = 1 − βn sech

2(
√
βnv). And we take v+ > 0, v− < 0 to be the two

solutions of v −√
βn tanh(

√
βnv) = 0.

Step 2’: Non-Normal Approximation for n−
1
4Un.

Take Vn = n−1/2Un. Then fVn(v) ∝ exp(−nϕ(v)). Taylor expanding ϕ′ at 0, we know there
exists some function g that is uniformly bounded such that ϕ′(v) = (1− βn)v +

1
3β

2
nv

3 + β3ng(v)v
5.

Hence

v+ =

√
3(βn − 1)

β2n
+O(βn − 1) =

√
3cn−1/4 +O(n−1/2).

Taylor expand tanh and sech at 0,

ϕ(2)(v+) = 1− βn + v2+

= −cn−1/2 + 3cn−1/2(1 +O(cn−1/2))−2 +O((cn−1/2)5/2)

= 2cn−1/2(1 +O(cn−1/2)),

ϕ(3)(v+) = 2(βn − v2+)v
2
+

= 2β3/2n sech2(
√
βnv+) tanh(

√
βnv+)

= 2(1 +O(cn−1/2))(1 +O(v2+))(
√
βnv+ +O(v3+))

= 2
√
3cn−1/4(1 +O(cn−1/2)),

ϕ(4)(v+) = 2(β − v2+)(β − 3v2+)

= 2β2n sech
4(
√
βnv+)− 4β2n sech

2(
√
βnv+) tanh

2(
√
βnv+)

= 2(1 +O(cn−1/2)).

Take Wn = n1/4Vn = n−1/4Un, w+ = n1/4v+ =
√
3c+O(n−1/4), and w− = n1/4v−. Define

hc,n(w)

=−
√
nϕ(2)(v+)

2
(w − wsgn(w))

2 − n1/4ϕ(3)(v+)

6
(w − wsgn(w))

3 − ϕ(4)(v+)

24
(w − wsgn(w))

4.
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By a change of variable and Taylor expansion, the density for Wn satisfies

fWn(w) ∝ gc,γ(w) = exp
(
hc,n(w) +O(∥ϕ(6)∥∞/6! )

(w − wsgn(w))
6

√
n

)
. (SA-14)

By Lemma SA-2, for ℓ ∈ {−,+}, condition on Wn ∈ Ic,n,ℓ, Wn−wℓ is sub-Gaussian with ψ2-norm
bounded by C. Let Wc,n be a random variable with density at w proportional to exp(hc,n(w)). By
similar argument as Equations SA-11 and SA-13,

dKS(Wn|Wn ∈ Ic,n,ℓ,Wc,n|Wc,n ∈ Cl) ≤ C(log n)3n−1/2).

The other steps, conditional Berry-Esseen, reduction through TV-distance inequality, and non-
Gaussian approximation for n

1
4 e(n

1
4Wc,n) can be proceeded in the same way as in the proof for

Lemma SA-3, with Wn − wℓ sub-Gaussian condition on Wn ∈ Ic,n,ℓ with ψ2-norm bounded by C,
and respectively for Wc,n.

SA-7.1.7 Proof for Lemma SA-5 Knife-Edge Representation

Again we take Un to be the latent variable from Lemma SA-1, and Wn = n−1/4Un. From Step 2 in
the proof of Lemma SA-4, fWn(w) = In(c)

−1hn(w), with In(c) =
∫∞
−∞ hn(w)dw, and

hn(w) = exp(−
√
n

2
w2 + n log cosh(n−

1
4

√
βnw)) = exp(−cn

2
w2 − β2n

12
w4 + g(w)β3nn

− 1
2w6),

where by smoothness of log(cosh(·)), ∥θ∥∞ ≤ K.

Case 1: When
√
n(βn−1) = o(1). We can apply Berry-Esseen conditional on Un the same way as

in the proof of Lemma SA-4, and its Step 2 can also be applied here to show that if we take W̃c to
be a random variable with density proportional to exp(−c2n/2w2 − β2n/12w

4), then dKS(Wn, W̃c) =
O((log n)3n−1/2). Moreover, cn = o(1) and βn = 1− o(1). Hence dKS(Wn,W0) = o(1). The rest of
the proof then follows from Step 3 to Step 5 in the proof for the critical regime case in Lemma SA-3.

Case 2: When
√
n(1 − βn) ≫ 1. Again we still have ∥Un∥ψ2 = O(n1/4). Similarly as in the

previous case, the first two steps in the proof of Lemma SA-4 implies dKS(Wn, W̃c) = o(1), where
the density of Wc is proportional to exp(−c2n/2w2 − β2n/12w

4). Since cn ≫ 1, the first term in the
exponent dominates, and we can show dKS(Wn,W

†
c) = o(1), where W†

c has density proportional
to exp(−c2n/2w2). Again, we can Taylor expand to get n1/4e(n1/4W)) = E[Xi]n

1
4 tanh

(
n−

1
4W
)
=

E[Xi][W − O( W2

3
√
n
)], and show dKS(n

1/4e(n1/4W†
c),E[Xi]W

†
c) = o(1). Combining with stablization

of variance as in the proof of Lemma SA-2 (high temperature case), we can show

dKS(gn, n
−1/4E[X2

i ]
1/2Z+ E[Xi]W

†
c) = o(1).

Since Z and W†
c are independent Gaussian random variables, we also have dKS(gn/

√
V[gn],Z) = o(1).

Case 3: When
√
n(βn − 1) ≫ 1. By Lemma SA-4 (2),

sup
t∈R

∣∣∣∣P(n
1
4gn ≤ t|m ∈ Ic,ℓ)− P(n−

1
4E[X2

i ]
1
2Z+ β

1
2
nE[Xi]Wcn,n ≤ t|Wcn,n ∈ Ic,ℓ)

∣∣∣∣ = o(1), (SA-15)
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where Wc,n has density proportional to exp(hc,n(w)), with

hc,n(w)

=−
√
nϕ(2)(v+)

2
(w − wsgn(w))

2 − n1/4ϕ(3)(v+)

6
(w − wsgn(w))

3 − ϕ(4)(v+)

24
(w − wsgn(w))

4,

and Ic,n,− = (−∞,Kc,n,−) and Ic,n,+ = (Kc,n,+,∞) such that E[Wc,n|Wc,n ∈ Ic,n,ℓ] = wc,n,ℓ for
ℓ ∈ {−,+}. Now we calculate the order of the coefficients under

√
n(βn − 1) ≫ 1. First, suppose

βn = 1 + cnγ for some γ ∈ (0,∞) and c not depending on n. Then v+ =
√

3(βn−1)
β2
n

+ O(βn − 1) =
√
3cn−γ/2 +O(n−γ). Taylor expand tanh and sech at 0,

ϕ(2)(v+) = 1− βn + v2+ = −cn−γ + cn−γ3(1 + cn−γ)−2 +O((cn−γ)5/2)

= 2cn−γ(1 +O(cn−γ)),

ϕ(3)(v+) = 2β3/2n sech2(
√
βnv+) tanh(

√
βnv+)

= 2(1 +O(cn−γ))(1 +O(v2+))(
√
βnv+ +O(v3+))

= 2
√
3cn−γ/2(1 +O(cn−γ)),

ϕ(4)(v+) = −2β4n sech
4(
√
βnv) + 4 sech2(

√
βnv) tanh

2(
√
βnv)

= −2(1 +O(cn−γ)).

We see when γ = 1/2, all of
√
nϕ(2)(v+), n1/4ϕ(3)(v+) and ϕ(4)(v+) are of order 1. And when cn =√

n(βn−1) ≫ 1, we have
√
nϕ(2)(v+) ≫ n1/4ϕ(3)(v+) ≫ ϕ(4)(v+). Since w+ = n1/4v+ =

√
3cn ≫ 1,

and similarly, |w−|≫ 1, condition on Wc,n ∈ [n], Wc,n − E[Wc,n|Wc,n ∈ [n]] is C-sub-Gaussian,
ℓ ∈ {−,+}. By similar concentration arguments as in the proof for Step 2 in Lemma SA-4 (1), we
can show the second order term in hc,n dominates, and for ℓ ∈ {−,+},

sup
t∈R

|P(Wc,n − E[Wc,n|Wc,n ∈ Iℓ] ≤ t|Wc,n ∈ Iℓ)− Φ(
√
n(1− βn + v2ℓ )t)|= o(1).

The conclusion then follows from pluggin the (conditional) Gaussian approximation for Wcn,n back
into Equation (SA-15), and the fact that Z is independent to Wc,n and also Gaussian.

SA-7.2 Proof of Section SA-3

SA-7.2.1 Proof of Lemma SA-1

Our proof is constructive. We show that consistent estimate of nV[τ̂n] would imply that one can
distinguish between two constructed hypotheses easily. Let Pn be the class of distributions of random
vectors (W = (W1, · · · ,Wn),Y = (Y1, · · · , Yn)) taking values in R2n that satisfies Assumptions 1,2,3.
Consider the following two data generating processes:

DGP0 : β = 0, G(·, ·) ≡ 1, ρn = 1, Yi(·, ·) = fi(·, ·) + εi, fi(·, ·) ≡ 1,

DGP1 : β = u, G(·, ·) ≡ 1, ρn = 1, Yi(·, ·) = fi(·, ·) + εi, fi(·, ·) ≡ 1,

where 0 < u < 1, and in both cases (εi : 1 ≤ i ≤ n) are i.i.d N(0, 1) random variables, independent
to W. Denote by P0,n and P1,n the laws of (W,Y) under DGP0 and DGP1. Then

dKL(P0,n(W,Y),P1,n(W,Y)) = dKL(P0,n(W),P1,n(W)) + dKL(P0,n(Y|W),P1,n(Y|W))

= dKL(P0,n(W),P1,n(W)),
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the first line uses chain rule of dKL, the second line uses

dKL(P0,n(Y|W),P1,n(Y|W)) = dKL(P0,n(Y),P1,n(Y)) = 0.

From Theorem 2.3 (and its proof) in [1],

M := lim
n→∞

dKL(P0,n(W),P1,n(W)) <∞.

Hence for large enough n,

dTV(P0,n(W,Y),P1,n(W,Y)) ≤ 1− 1

2
exp(−dKL(P0,n(W,Y),P1,n(W,Y)))

≤ 1− 1

2
exp(−M).

Le Cam’s method (Section 15.2.1 in [8]) gives for large enough n,

inf
V̂

sup
Pn∈Pn

EPn [n(V̂[τ̂ − τ ]− V[τ̂ − τ ])]

≥n|VPn,0 [τ̂ − τ ]− VPn,1 [τ̂ − τ ]|(1− dTV(P0,n(W,Y),P1,n(W,Y)))

≥ε exp(−M)/2,

in the last line we used Theorem 2 (1) to get nVPn,0 [τ̂ − τ ]− nVPn,1 [τ̂ − τ ] = ε(1 + o(1)).

SA-7.2.2 Proof of Lemma SA-2

The following discussions will be organized according to the three different cases: (1) When β < 1.
(2) When β ≥ 1, m concentrates around 0. (3) When β ≥ 1 and m concentrates around two
symmetric locations w+ > 0 and w− < 0 with |w+|= |w−|.

We have required β̂ ∈ [0, 1]. For analysis, consider an unrestricted pseud-likelihood estimator,

β̂UR = argmax
β∈R

l(β;W),

where l(β;W) is the pseudo log-likelihood given by

l(β;W) =
∑

i∈[n]
logPβ (Wi | W−i) =

∑

i∈[n]
− log

(
1

2
Wi tanh(βmi) +

1

2

)
.

We show that l(β;W) is concave.

∂

∂β
l(β;W) = − 1

n

n∑

i=1

(n−1
∑

j ̸=iWj)Wi sech
2(βn−1

∑
j ̸=iWj)

Wi tanh(βn−1
∑

j ̸=iWj) + 1

= − 1

n

n∑

i=1

(
1

n

∑

j ̸=i
Wj

)
(Wi − tanh(βn−1

∑

j ̸=i
Wj)),

and

l(2)(β;W) =
1

n

n∑

i=1

(
1

n

∑

j ̸=i
Wj

)2

sech2
(
β

n

∑

j ̸=i
Wj

)
> 0.

Hence l(·;W) is concave everywhere in R. This shows β̂ = min{max{β̂UR, 0}, 1}. Now we study
limiting distribution of β̂UR
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1. High and critical temperature regime.

To obtain a more precise distribution for β̂UR, we use Fermat’s condition to obtain that

0 =
1

n

n∑

i=1

(
1

n

∑

j ̸=i
Wj

)(
Wi − tanh

(
β̂URn

−1
∑

j ̸=i
Wj

))

=
1

n

n∑

i=1

(
m − Wi

n

)(
Wi − tanh(β̂URm) + sech2(β̂URm)

β̂URWi

n
+O(n−2)

)

=
1

n

n∑

i=1

(
m − Wi

n

)((
1 + sech2(β̂URm)

β̂UR
n

)
Wi − tanh(β̂URm) +O(n−2)

)

=

(
1 +

β̂UR
n

sech2(β̂URm)

)(
m2 − 1

n

)
− n− 1

n
m tanh(β̂URm) +O(n−2)m,

here O(·)’s are all up to an absolute constant. By Lemma SA-4 with Xi = 1, we can show
E[|(nm)−1|] ≤ Cn−1/2. By Markov inequality, (nm)−1 = OP(n

−1/2). Taylor expanding tanh, we
have

β̂UR =
n

(n− 1)m
tanh−1

(
m − 1

nm

)

=
n

(n− 1)m

(
m − 1

nm
+

1

3

(
m − 1

nm

)3

+O

((
m − 1

nm

)5))

= 1− 1

nm2
+

m2

3
+OP(n

−1), (SA-16)

where in the above equation, both O(·) and OP(·) are up to absolute constants. The rest of the
results are given according to the different temperature regimes.

(1) The High Temperature Regime. Using Lemma SA-2 withXi = 1, our result for the high
temperature regime with β < 1 implies that n

1
2m

d→ N(0, 1
1−β ) ⇒ (1− β)nm2 d→ χ2(1). Therefore

we conclude that 1−β
1−β̂UR

d→ χ2(1). The conclusion then follows from β̂ = min{max{β̂UR, 0}, 1}.

(2) The Critical Temperature Regime. Using Lemma SA-2 withXi = 1, we have dKS(n
1
4m,W0) =

o(1). This implies n
1
2 (β̂UR − 1)

d→ Law(
W2

0
3 − 1

W2
0
). Since W0 = OP(1), P(β̂UR < 0) = o(1). The

conclusion then follows from β̂ = min{max{β̂UR, 0}, 1}.

2. The low temperature regime.

When m concentrates around π+ and π− we have when m > 0, use the fact that πℓ = tanh(βπℓ) for
ℓ ∈ {+,−},

β̂UR − β =
(1−O(n−1))(m − tanh(βm))

m sech2(βm)
+ mO(δ2) +O(n−1)

=
(1−O(n−1)) ((m − πℓ)− (tanh(βm)− tanh(βπℓ)))

πℓ
(
sech2(βπℓ)− 2(m − πℓ) tanh(βπℓ) sech

2(βπℓ) +O(m − πℓ)2
) (

1 + m−πℓ
πℓ

)

+ mO(δ2) +O(n−1)

= (1−O(n−1))
(1− β sech2(βπℓ))(m − πℓ)

πℓ sech
2(βπℓ)

(1 +O(m − πℓ)) + mO(δ2) +O(n−1).
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and the similar argument gives

m(β̂UR − β∗) =
1− β∗ sech2(β∗πℓ)

sech2(β∗πℓ)
(m − πℓ) +Oψ1(n

−1).

The conclusion then Lemma SA-3 (3) and the convergence of m to π+ or π−.

SA-7.2.3 Proof of Lemma SA-3

Again we consider the unrestricted PMLE given by

β̂UR = argmax
β∈R

l(β;W),

where l(β;W) is the pseudo log-likelihood given by

l(β;W) =
∑

i∈[n]
logPβ (Wi | W−i) =

∑

i∈[n]
− log

(
1

2
Wi tanh(βmi) +

1

2

)
.

For β ∈ [0, 1], that is cβ =
√
n(β − 1) ≤ 0, Equation (SA-16) and the approximation of m by

n−1/2Z+ n−1/4Wc from Lemma SA-4 gives

sup
β∈[0,1]

sup
t∈R

|P(1− β̂ ≤ t)− P(z−2
β,n −

3

n
z2β,n ≤ t)|= o(1).

The conclusion follows from the fact that x 7→ max{min{x, 0}, 1} is 1-Lipschitz.

SA-7.3 Proofs for Section SA-4

SA-7.3.1 Preliminary Lemmas

Lemma SA-1. Suppose π = E[Wi] where W = (Wi)1≤i≤n takes value in {−1, 1}n and

P (W = w) =
1

Z
exp


β
n

∑

i<j

WiWj + h

n∑

i=1

Wi


 , β = 1, h = 0.

Suppose either h ̸= 0 or h = 0, 0 ≤ β ≤ 1 holds. Then π = tanh(βπ + h) +O(n−1).

Proof. First, if h = 0, then π = tanh(βπ + h) = 0. Now, consider π ̸= 0. Using concentration of
m := 1

n

∑n
i=1Wi towards π from Lemma SA-3,

π = E[E[Wi|W−i]] = E[tanh(βmi + h)]

=E[tanh(βπ + h) + sech2(βπ + h)(mi − π)− sech2(βm∗ + h) tanh(βm∗ + h)(mi − π)2]

= tanh(βπ + h) +O(n−1).

Lemma SA-2. Suppose Assumption 1, and Assumption 2, 3 hold. Then (1)

max
i∈[n]

∣∣∣∣
Mi

Ni
− π

∣∣∣∣ = Oψβ,γ
(n−rβ,h) +Oψ2(N

−1/2
i ).
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(2) Define A(U) = (G(Ui, Uj))1≤i,j≤n. Condition on U such that A(U) ∈ A = {A ∈ Rn×n :
mini∈[n]

∑
j ̸=iAij ≥ 32 log n}, for large enough n, for each i ∈ [n] and t > 0,

P
(∣∣∣∣
Mi

Ni
− π

∣∣∣∣ ≥ 4E[Ni|U]−1/2t1/2 + Cβ,hn
−rβ,htpβ,h

∣∣∣∣U
)

≤ 2 exp(−t) + n−98,

where Cβ,h is some constant that only depends on β, h.
(3) When h = 0, and β ∈ [0, 1], then there exists a constant K that does not depend on β, such

that for large enough n, for each i ∈ [n] and t > 0,

P
(∣∣∣∣
Mi

Ni
− π

∣∣∣∣ ≥ 4E[Ni|U]−1/2t1/2 + Kn−rβ,ht

∣∣∣∣U
)

≤ 2 exp(−t) + n−98.

Proof. Take Un to be a random variable with density

fUn(u) =

exp

(
−1

2u
2 + n log cosh

(√
β
nu+ h

))

∫∞
−∞ exp

(
−1

2v
2 + n log cosh

(√
β
nv + h

))
dv

.

Condition on Un, Wi’s are i.i.d. Decompose by

Mi

Ni
− π =

∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un]) + E[Wj |Un]− π.

Condition on Un, Wi’s are i.i.d. Berry-Esseen theorem condition on Un and E gives,

sup
t∈R

∣∣∣∣P
(Mi

Ni
− π ≤ t

∣∣∣E
)
− P

(√v(Un)

Ni
Z + e(Un) ≤ t

∣∣∣E
)∣∣∣∣ = O(n−

1
2 ), (SA-17)

where e(Un) := E[Wi|Un]−π = tanh(
√
β/nUn+h)−π, and v(Un) := V[Wi−π|Un]. By McDiarmid’s

inequality,

P
(
|
∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un]) |≥ 2N
−1/2
i t

∣∣∣∣E
)

≤ 2 exp(−t2).

Plugging into Equation (SA-17), we can show (1) holds.
Next, we want to show condition on U such that A(U) ∈ A, P(Ni ≤ E[Ni|U]/3|U) ≤ n−100:
Notice that for any U such that ρnmini∈[n]

∑
j ̸=iAij(U) → ∞, Condition on A such that

A ∈ A, Eij = ρAijιij , 1 ≤ i ≤ j ≤ n are i.i.d Bernouli random variables, and for each i, j,∑
k ̸=i,j Aki ≥ 32 log n− 1 ≥ 31 log n for n ≥ 3. By bounded difference inequality, for all t > 0,

P
(∣∣∣∣
∑

k ̸=i,j
Eki −

∑

k ̸=i,j
ρnAki

∣∣∣∣ ≥ ρn

√∑

k ̸=i,j
A2
i,jt

)
≤ 2 exp(−2t2).
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Hence condition on A, with probability at least 1− n−100,

∑

k ̸=i,j
Eki ≥

∑

k ̸=i,j
ρnAki − 8

√
log nρn

√∑

k ̸=i,j
A2
ij ≥ ρn

∑

k ̸=i,j
Aki − 8

√
log nρn

√∑

k ̸=i,j
Aki

≥ ρn

√∑

k ̸=i,j
Aki



√∑

k ̸=i,j
Aki − 8

√
log n




≥ ρn

√∑

k ̸=i,j
Aki



√∑

k ̸=i,j
Aki − 8

√
31−1

∑

k ̸=i,j
Aij




≥ ρn
∑

k ̸=i,j
Aij/3 ≥ 31

3
log n, (SA-18)

and since ρnAi,j = E[Eij |U] ∈ [0, 1],
∑

k ̸=i,j Eki + 1 ≥ E[Nj |A]/3. By Equation SA-18, condition
on U such that A(U) ∈ A, P(Ni ≤ E[Ni|U]/3|U) ≤ n−100.

Hence we can disintegrate over the distribution of E to get

P


|
∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un]) |≥ 4E[Ni|U]−1/2t

∣∣∣∣∣∣
U


 ≤ 2 exp(−t2) + n−100.

By Equation SA-7 and Lemma SA-2, and the Lipschitzness of tanh that

E[Wi|Un]− π = Oψβ,h

(
n−rβ,h

)
.

Plugging into Equation (SA-17), we can show (2) holds.
Under the setting of (3), the only part that depends on β in our proof is Un. Since we show in

Lemma SA-2 ∥Un∥ψ1 ≤ Kn1/4 for some absolute constant K, which is essentially the β = 1 rate, the
conclusion of (3) then follows.

SA-7.3.2 Proof of Lemma SA-1

Since we use the conditional probability pi in the inverse probability weight, we have

E[τ̂n,UB|(fi)i∈[n],E] =
1

n

n∑

i=1

E
[
TiYi
pi

− (1− Ti)Yi
1− pi

∣∣∣∣(fi)i∈[n],E
]

=
1

n

n∑

i=1

E
[
E
[
TiYi
pi

− (1− Ti)Yi
1− pi

∣∣∣∣T−i, (fi)i∈[n],E
]∣∣∣∣(fi)i∈[n],E

]
,

and the conclusion follows from E[Ti|T−i, (fi)i∈[n],E] = pi.

SA-7.3.3 Proof of Lemma SA-2

First consider the treatment part.

n−aβ,h

n∑

i=1

Ti
pi
gi (1, π) = n−aβ,h

n∑

i=1

gi (1, π) + n−aβ,h

n∑

i=1

Ti − pi
pi

gi (1, π) .
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For the second term, taylor expand p−1
i , pi as follows:

p−1
i =1 + exp (−2βmi − 2h) = 1 + exp

(
−2β

n− 1

n
π − 2h

)

− exp

(
−2β

n− 1

n
π − 2h

)
2β

(
mi −

n− 1

n
π

)
+

1

2
exp(−ξ∗i )4β2

(
mi −

n− 1

n
π

)2

,

(SA-19)

where ξ∗i is some random quantity that lies between 4βn
∑

j ̸=iWj and 4βn
∑

j ̸=i π. Taking the pa-
rameters c+i = gi (1, π) (1 + exp(−2βπ − 2h)), d+ = β(1− tanh(βπ + h))E[gi(1, π)]. Then

n−aβ,h

n∑

i=1

Ti − pi
pi

gi (1, π)

(1)
=n−aβ,h

n∑

i=1

(Ti − pi)gi (1, π) (1 + exp (−2βπ − 2h)− exp (−2βπ − 2h) 2β(mi − π))

+Oψβ,h,tc(n
−rβ,h)

(2)
=n−aβ,h

n∑

i=1

ci(Ti − pi) +Oψβ,h,tc((log n)
1/2n−rβ,h)

(3)
=n−aβ,h

n∑

i=1

c+i

[
Ti −

1

1 + exp(−2βπ − 2h)
− 2β exp(2βπ + 2h)

(1 + exp(2βπ + 2h))2
(mi − π)

]

+Oψβ,h,tc((log n)
1/2n−rβ,h)

=n−aβ,h

n∑

i=1

c+i
2

(Wi − tanh(βπ + h))

− n−aβ,h

n∑

i=1

2β exp(2βπ + 2h)

(1 + exp(2βπ + 2h))2
(
1

n

∑

j ̸=i
c+j ) (Wi − π) +Oψβ,h,tc((log n)

1/2n−rβ,h)

(4)
=n−aβ,h

n∑

i=1

[
gi (1, π) + (c+i /2− d+) (Wi − π)

]
+Oψβ,h,tc((log n)

1/2n−rβ,h).

Proof of (1): By Lemma SA-3, m − π = Oψβ,h
(n−rβ,h). The claim follows from Equation SA-19

and a union bound argument.

Proof of (2):

n−aβ,h

n∑

i=1

(Ti − pi)gi(1, π)(mi − π) =
1

2
(m − π)n−aβ,h

n∑

i=1

(Wi − tanh(βm + h))gi(1, π)

+O(n−aβ,h).

By Lemma SA-3,

m − π = Oψβ,h,tc(n
−rβ,h).
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Taylor expand tanh(x) at x = βπ + h, we have

n−aβ,h

n∑

i=1

gi(1, π)(Wi − tanh(βm + h))

=n−aβ,h

n∑

i=1

gi(1, π)(Wi − tanh(βπ + h)− β sech2(βπ + h)(m − π) + tanh(βπ + h) sech2(βπ + h)(m − π)2

+O((m − π)3))

=Oψβ,h,tc
(1).

hence

n−aβ,h

n∑

i=1

(Ti − pi)gi(1, π)(mi − π) = Oψβ,h,tc((log n)
1/2n−rβ,h).

Proof of (3): The first line follows from a Taylor expansion of pi = (1 + exp(2βmi + 2h))−1 at
π, and mi − π = Oψβ,h

(n−rβ,h), noticing that ci, ∥ψ′′∥∞ are bounded. The second line follows by
reordering the terms.

Proof of (4): By Lemma SA-1, tanh(βπ+h) = π+O(n−1). By boundedness and i.i.d of gi(1, π),
1
n

∑
j ̸=i cj = c + O(n−1) = E[ci] + OP(n

−1/2) + O(n−1). Similarly, for the control part, taking the
parameters c−i = gi (−1, π) (1 + exp(2βπ + 2h)), d− = β(1− tanh(−βπ − h))E[gi(−1, π)].

− n−aβ,h

n∑

i=1

1− Ti
1− pi

gi(−1, π)

=− n−aβ,h

n∑

i=1

gi(−1, π) + n−aβ,h

n∑

i=1

(c−i /2− d−)(Wi − π) +Oψβ,h,tc((log n)
1/2n−rβ,h).

Using Lemma SA-1 again, we can show (1+exp(−2βπ−2h))/2 = 1/π+O(n−1) and (1+exp(2βπ+
2h))/2 = 1/(1−π)+O(n−1), tanh(−βπ−h) = −π+O(n−1). The result then follows from replacing
these quantities in c+i , c

−
i , d

+, d− by corresponding ones using π.

SA-7.3.4 Proof of Lemma SA-3

We decompose by ∆2,2 = ∆2,2,1 +∆2,2,2, where

∆2,2,1 = n−aβ,h

n∑

i=1

Ti − E[pi]
E[pi]

g′i(1, π)
(
Mi

Ni
− π

)
,

∆2,2,2 = n−aβ,h

n∑

i=1

Ti
(
p−1
i − E[pi]−1

)
g′i(1, π)

(
Mi

Ni
− π

)
.

Notice that the first term is a quadractic form. Define H such that Hij =
g′i(1,π)Eij

2E[pi]Ni
. Then ∆2,2,1 =

n−aβ,h(W−π)TH(W−π). Take Un to be the latent variable from Lemma SA-1. Then we decompose

∆2,2,1 = ∆2,2,1,a +∆2,2,1,b +∆2,2,1,c +∆2,2,1,d,
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where

∆2,2,1,a = n−aβ,h(W − E[W|Un])TH(W − E[W|Un]),
∆2,2,1,b = n−aβ,h(E[W|Un]− π)TH(W − E[W|Un]),
∆2,2,1,c = n−aβ,h(W − E[W|Un])TH(E[W|Un]− π),

∆2,2,1,d = n−aβ,h(E[W|Un]− π)TH(E[W|Un]− π).

Since ∥H∥2 ≤ ∥H∥F ≤ B
2π

√
n(miniNi)

−1/2, we can apply Hanson-Wright inequality conditional on
Un,E,

∆2,2,1,a = Oψ1(n
1
2
−aβ,h(min

i
Ni)

−1/2).

Since g′i(1, π)’s are independent to Wi, by Lemma SA-3,

n−aβ,h

n∑

i=1

(Wi − π)g′i(1, π) = Oψβ,h,tc(1).

By Equation SA-7, Lipschitzness of tanh and Lemma SA-2, E[Wi|Un]− π = Oψβ,h
(n−rβ,h), hence

∆2,2,1,b = (E[Wi|Un]− π)n−aβ,h

n∑

i=1

Ti − E[pi]
E[pi]

g′i(1, π) = Oψβ,h,tc

(
(log n)−1/2n−rβ,h

)
.

Then by concentration of Mi
Ni

from Lemma SA-2, we have

|∆2,2,1,c| =
∣∣∣∣∣
E[Wi|Un]− π

2E[pi]
n−aβ,h

n∑

i=1

g′i(1, π)
(
Mi

Ni
− π

)∣∣∣∣∣

≤ nrβ,h
∣∣∣∣
E[Wi|Un]− π

2E[pi]

∣∣∣∣ ·max
i∈[n]

∣∣∣∣
Mi

Ni
− π

∣∣∣∣

= Oψ2,tc

(
log nmax

i∈[n]
E[Ni|U]−1/2

)
+Oψβ,γ ,tc(n

−rβ,h).

The bound for ∆2,2,1,d follows from the definition of H and Un,

∆2,2,1,d = nrβ,h

(
tanh

(√
β

n
Un + h

)
− E

[
tanh

(√
β

n
Un + h

)])2

= Oψβ,γ
(n−rβ,h).

SA-7.3.5 Proof of Lemma SA-4

Take Un to be the latent variable given in Lemma SA-1. We further decompose by

∆2,3,1 = n−aβ,h

n∑

i=1

1

2
g
(2)
i (1, η∗i )


∑

j ̸=i

Eij
Ni

(Wi − π)




2

= ∆2,3,1,a +∆2,3,1,b +∆2,3,1,c,
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where η∗i is some value between π and Mi/Ni, and

∆2,3,1,a = n−aβ,h

n∑

i=1

1

2
g
(2)
i (1, η∗i )


∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un])




2

,

∆2,3,1,b = n−aβ,h

n∑

i=1

1

2
g
(2)
i (1, η∗i )


∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un])


 (E[Wj |Un]− π) ,

∆2,3,1,c = n−aβ,h

n∑

i=1

1

2
g
(2)
i (1, η∗i ) (E[Wj |Un]− π)2 .

Part I: ∆2,3,1,c.

E[Wi|Un,U] = tanh

(√
β
nUn + h

)
, hence E[Wi|Un] − π = Oψβ,h

(n−rβ,h) and (E[Wi|Un] − π)2 =

Oψpβ,h/2
(n−2rβ,h). It then follows from boundness of g(2)i (1, η∗i ) that

∆2,3,1,c = Oψpβ,h/2
(n−rβ,h).

Part II: ∆2,3,1,b.

Condition on Un, Wi’s are i.i.d. By Mc-Diarmid inequality conditional on Un for each
∑

j ̸=i
Eij

Ni
(Wj−

E[Wj |Un]) and using a union bound over i ∈ [n], for all i ∈ [n], for all t > 0,

P
(
|∆2,3,1,b| ≥ 2max

i
N

−1/2
i nrβ,h |E[Wj |Un]− π|

√
t

∣∣∣∣Un,E
)

≤ 2n exp(−t).

The tails for nrβ,h(E[Wj |Un]− π) are also controlled,

P
(
nrβ,h |E[Wj |Un]− π| ≥ Cβ,h(log n)

1/pβ,h
)
≤ n−1/2.

Integrate over the distribution of Un and using a union bound, for large n, for all t > 0,

P
(
|∆2,3,1,b|≥ 2Cβ,hmax

i
N

−1/2
i t1/pβ,h

∣∣∣∣E
)

≤ 2n exp(−t) + Cβ,hn
−1/2.

By Equation SA-18, condition on U such that A(U) ∈ A, P(Ni ≤ E[Ni|U]/3|U) ≤ n−100. Hence
for such U,

P
(
|∆2,3,1,b|≥ 4Cβ,hmax

i
E[Ni|U]−1/2t1/pβ,h

∣∣∣∣U
)

≤ 2n exp(−t) + Cβ,hn
−1/2.

In other words, conditional on U s.t. A(U) ∈ A,

∆2,3,1,b = Oψβ,h,tc(max
i

E[Ni|U]−1/2).

Part III: ∆2,3,1,a.
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For notational simplicity, we will denote

Ai =
1

2
g
(2)
i (1, η∗i )


∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un])




2

=
1

2
θ

(
Mi

Ni

)
∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un])




2

=: F (W,Un),

and since we assume gi(ℓ, ·) is C4 for ℓ ∈ {−1, 1}, we know θ(ℓ, ·) is C2 for ℓ ∈ {−1, 1}. Then we
can decompose ∆2,3,1,a − E[∆2,3,1,a|E] as

∆2,3,1,a − E[∆2,3,1,a|E] = n−aβ,h

n∑

i=1

(Ai − E[Ai|Un,E]) + n−aβ,h

n∑

i=1

(E[Ai|Un,E]− E[Ai|E]) .

where F is a function that possibly depends on β(U) and E.
First part of ∆2,3,1,a: The first two terms have a quadratic form in Wj −E[Wj |Un], except for

the term θ(Mi/Ni). We will handle it via a generalized version of Hanson-Wright inequality. Fix
Un and E, consider

H(W) = n−1/2
n∑

i=1

1

2
θ

(
Mi

Ni

)
∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un])




2

.

Denoting by DkH the partial derivative of H w.r.p to Wk and Dk,l the mixed partials, then

DkH(W) =n−1/2
n∑

i ̸=k

1

2
θ′
(
Mi

Ni

)
Eik
Ni


∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un])




2

+ n−1/2
n∑

i ̸=k
θ

(
Mi

Ni

)
2


∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un])


 Eik

Ni
.

Since we have assumed f is at least 4-times continuously differentiable, we can apply standard
concentration inequalities for

∑
j ̸=i

Eij

Ni
(Wj − E[Wj |Un]) to get

|E[DkH(W)|Un,E]|≲ n−1/2
n∑

i=1

EikN
−3/2
i .

Hence the gradient of H is bounded by

∥E[DH(W)|Un,E]∥22 ≲
n∑

k=1

n−1

(
n∑

i=1

EikN
−3/2
i

)2

≲
n∑

k=1

n−1




n∑

i=1

EikN
−3
i +

∑

j1=1

∑

j2 ̸=j1

Ej1kEj2k

N
3/2
j1

N
3/2
j2




≲maxiN
2
i

miniN3
i

.
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Moreover, the mix partials are

Dk,lH(W) =n−1/2
n∑

i ̸=k,l
θ′′
(
Mi

Ni

)
∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un])




2

EikEil
N2
i

+ 2n−1/2
n∑

i=1

θ′
(
Mi

Ni

)
2


∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un])


 EikEil

N2
i

+ n−1/2
n∑

i=1

θ

(
Mi

Ni

)
EikEil
N2
i

.

Hence ∥Dk,lH(W)∥∞ ≲ n−1/2
∑n

i=1
EikEil

N2
i

. Hence

∥∥HF∥2F ∥∞ ≲
n∑

k=1

n∑

l=1

(
n−1/2

n∑

i=1

EikEil
N2
i

)2

≲ n−1
n∑

i1=1

n∑

l=1

Ei1l
Ni1

n∑

k=1

Ei1k
Ni1

n∑

i2=1

Ei2k
Ni2

1

Ni2

≲ maxiNi

miniN2
i

.

Moreover, since HF is symmetric,

∥∥HF∥2∥∞ ≤ ∥∥HF∥1∥∞ ≲ max
k

n∑

l=1

n−1/2
n∑

i=1

EikEil
N2
i

≲ n−1/2maxiNi

miniNi
.

Hence by Theorem 3 from [4], for all t > 0,

P
(∣∣∣∣n−1/2

n∑

i=1

(Ai − E[Ai|Un,E])

∣∣∣∣ ≥ t

∣∣∣∣Un,E
)

≤ exp


−cmin


 t2

maxiN2
i

miniN3
i
+ maxiNi

miniN2
i

,
t

n−1/2maxiNi
miniNi




 .

By Equation SA-18 and a similar argument for upper bound, for each i ∈ [n], conditional on U
such that A(U) ∈ A, with probability at least 1−n−100, E[Ni|U]/2 ≤ Ni ≤ 2E[Ni]. Hence for each
t > 0,

P

(∣∣∣∣∣n
−1/2

n∑

i=1

(Ai − E[Ai|Un,E])

∣∣∣∣∣ ≥ 8max
i

E[Ni|U]−1/2
√
t+ 8Cβ,hn

−1/2t

∣∣∣∣∣U
)

≤ exp(−t)

+ n−99,

that is

n−aβ,h

n∑

i=1

(Ai − E[Ai|Un,E]) = Oψ2,tc

(
n

1
2
−aβ,h maxE[Ni|U]−1/2

)
+Oψ1,tc

(
n−1/2

)
. (SA-20)

Second part of ∆2,3,1,a: Next, we will show n1−aβ,h (E [Ai|U,U,E]− E [Ai|E]), is small.
There exists a function F that possibly depends on β and E such that

F (W,Un) =
1

2
θ

(
Mi

Ni

)
∑

j ̸=i

Eij
Ni

(Wj − E[Wj |Un])




2

.
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Define p(u) = P(Wj = 1|U,U). Then

E[Ai|U = u,U,E] = E[F (W, U)|U = u] =
∑

w∈{−1,1}n

n∏

l=1

p(u)wl(1− p(u))1−wlF (w, u).

Using chain rule and product rule for derivatives,

∂uE [Ai|U = u,U]

=
∑

w∈{−1,1}n

[
n∑

l=1

∏

s ̸=l
p(u)ws(1− p(u))1−ws (F ((w−l, wl = 1), u)− F ((w−l, wl = −1), u))

+
n∏

i=1

p(u)wi(1− p(u))1−wi∂uF (w, u)

]
p′(u)

=
n∑

l=1

EW−l
[F ((W−l,Wl = 1), u)− F ((W−l,Wl = −1), u)] p′(u) + EW [∂uF (W, u)] p′(u)

=
n∑

l=1

OP

(
1√
Ni

Eil
Ni

)
∥p′∥∞ +OP

(
1√
Ni

∥p′∥∞
)
∥p′∥∞ = OP((nNi)

−0.5),

where in the last line, we have used

|DWl
F (w, u)|≲ ∥θ′∥∞

Eil
Ni


∑

j ̸=i

Eij
Ni

(Wj − E[Wj |U,U])




2

+ ∥θ∥∞

∣∣∣∣∣∣
∑

j ̸=i

Eij
Ni

(Wj − E[Wj |U,U])

∣∣∣∣∣∣
Eil
Ni

,

|∂uF (w, u)|≲ ∥θ∥∞∥p′∥∞

∣∣∣∣∣∣
∑

j ̸=i

Eij
Ni

(Wj − E[Wj |U,U])

∣∣∣∣∣∣
,

and that fact that ∥p′∥∞ = O((2β/n)0.5) and Hoeffiding’s inequality for
∑

j ̸=i
Eij

Ni
(Wj −E[Wj |Un]),

|∂uE [F (w,Un)|Un = u,E]| ≤ E [|∂uF (w,Un)||Un = u] = O

(
n−1/2min

i
N

−1/2
i

)
.

Since Un = Oψβ,h
(naβ,h−1/2), we have

n−aβ,h

n∑

i=1

(E[Ai|Un,U]− E[Ai|U]) = Oψβ,h

(
n1−aβ,hn−1/2min

i
N

−1/2
i naβ,h−1/2

)

= Oψβ,h

(
min
i
N

−1/2
i

)
. (SA-21)

Combining Equations SA-20 and SA-21, conditional on U such that A(U) ∈ A,

n−aβ,h

n∑

i=1

(Ai − E[Ai|E]) = Oψ2,tc

(
n

1
2
−aβ,h maxE[Ni|U]−1/2

)
+Oψ1,tc

(
n−1/2

)

+Oψβ,h,tc

(
max
i

E[Ni]
−1/2

)
.

Combining the bounds for ∆2,3,1,a,∆2,3,1,b,∆2,3,1,c, we get the desired result.
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SA-7.3.6 Proof of Lemma SA-5

Recall

∆2,3,2 = n−aβ,h

n∑

i=1

1

2

Wi − E[Wi|W−i]
pi

[
gi

(
1,
Mi

Ni

)
− gi (1, π)− g′i (1, π)

(
Mi

Ni
− π

)]
.

First, we will consider the effect of fluctuation of pi and E[Wi|W−i]. Recall

E[Wi|W−i] = tanh (βmi + h) , pi = (1 + exp (−2βmi − 2h))−1 .

It follows from the boundeness of βmi + h, mi − π = Oψβ,h
(n−rβ,h) that for each i ∈ [n],

Wi − E[Wi|W−i]
pi

= 2
Wi − π

π + 1
+Oψβ,h

(n−rβ,h).

Moreover for some η∗i between Mi/Ni and π, using Lemma SA-2 we have

gi

(
1,
Mi

Ni

)
− gi (1, π)− g′i (1, π)

(
Mi

Ni
− π

)

=
1

2
g′′i (1, η

∗
i )

(
Mi

Ni
− π

)2

= Oψpβ,h/2,tc(n
−2rβ,h) +Oψ1,tc(N

−1
i ).

Using a union bound over i and an argument for the product of two terms with bounded Orlicz
norm with tail control, we have

∆2,3,2 =n
−aβ,h

n∑

i=1

Wi − π

π + 1

[
gi

(
1,
Mi

Ni

)
− gi(1, π)− g′i(1, π)

(
Mi

Ni
− π

)]

+Oψpβ,h/2,tc((log n)
−1/pβ,hn−2rβ,h) +Oψ1,tc((log n)

−1/pβ,hN−1
i ).

Next, we will show n−aβ,h
∑n

i=1
Wi−π
π+1

[
gi

(
1, Mi

Ni

)
− gi(1, π)− g′i(1, π)

(
Mi
Ni

− π
)]

is small. Suppose
gi(1, ·) is p-times continuously differentiable. Define

δp = n−aβ,h

n∑

i=1

Wi − π

π + 1
g
(p)
i (1, π)

(
Mi

Ni
− π

)p
.

We will use the conditioning strategy to analyse δp: Decompse by

δp = δp,1 + δp,2 + δp,3,

with

δp,1 = n−aβ,h

n∑

i=1

Wi − E[Wi|Un]
π + 1

g
(p)
i (1, π)

(
Mi

Ni
− E[Wi|Un]

)p
,

δp,2 = n−aβ,h

n∑

i=1

E[Wi|Un]− π

π + 1
g
(p)
i (1, π)

(
Mi

Ni
− E[Wi|Un]

)p
,

δp,3 = n−aβ,h

n∑

i=1

Wi − π

π + 1
g
(p)
i (1, π)

[(
Mi

Ni
− E[Wi|Un]

)p
−
(
Mi

Ni
− π

)p]
.
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First, we will show δp,2 and δp,3 are small. By Hoeffding inequality, Mi/Ni−E[Wi|Un] = Oψ2(N
−1/2
i ).

Moreover, E[Wi|Un]− π = Oψβ,h
(n−rβ,h). Hence

δp,2 = Oψβ,h,tc(max
i
N

−1/2
i ).

For δp,3, we have
(
Mi

Ni
− E[Wi|Un]

)p
−
(
Mi

Ni
− π

)p
= p

(
Mi

Ni
− ξ∗

)p−1

(E[Wi|Un]− π) ,

where ξ∗ is some quantity between E[Wi|Un] and π. Since x 7→ xp−1 is either monotone or convex
and none-negative, condition on E,

∣∣∣∣
Mi

Ni
− ξ∗

∣∣∣∣
p−1

≤ max

{∣∣∣∣
Mi

Ni
− E[Wi|Un]

∣∣∣∣
p−1

,

∣∣∣∣
Mi

Ni
− π

∣∣∣∣
p−1
}

= Oψ pβ,h
p−1

(n−(p−1)rβ,h) +Oψ 2
p−1

(N
− p−1

2
i ).

Combining with boundedness of g(p)i (1, π) and tail control of E[Wi|Un], we have

δp,3 = Oψ pβ,h
p−1

(
(log n)

1
pβ,h n−(p−1)rβ,h

)
+Oψ 2

p−1

(
(log n)

1
pβ,hN

− p−1
2

i

)
.

For δp,1, we will again use the generalized version of Hanson-Wright inequality. For each k ∈ [n],

∂kδp,1 =n
−aβ,h

∑

i ̸=k

Wi − E[Wi|Un]
π + 1

g
(p)
i (1, π)p

(
Mi

Ni
− E[Wi|Un]

)p−1 Eik
Ni

+ n−aβ,hg
(p)
k (1, π)

(
Mk

Nk
− E[Wi|Un]

)p
.

Hence condition on E,

∥E [∇δp,1]∥ = O
(
n1/2−aβ,hN

−(p−1)/2
i

)
.

Taking mixed partials w.r.p δp,1 and using boundedness of g(p)i , we have

∥∂k∂lδp,1∥∞ ≲ n−aβ,h
∑

i ̸=k,l

EikEil
N2
i

+ n−aβ,h
Elk
Nl

+ n−aβ,h
Ekl
Nk

.

It follows that

∥∥Hess(δp,1)∥2∥∞ ≲ ∥∥Hess(δp,1)∥F ∥∞ ≲ n1/2−aβ,h

(
maxiN

3
i

miniN4
i

)1/2

.

It then follows from Equation SA-18 and Theorem 3 in [4] that conditional on U such that A(U) ∈
A,

δp,1 − E[δp,1|E] = Oψ1,tc

(
n1/2−aβ,h

(
maxi E[Ni|U]3

mini E[Ni|U]4

)1/2
)
.
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Trade-off Between Smoothness of gi(1, ·) and Sparsity of Graph Assume gi(1, ·) is p+ 1-
times continuously differentiable. Then by the decomposition of ∆2,3,2, condition on U such that
A(U) ∈ A,

∆2,3,2 − E[∆2,3,2|E]

=

p∑

l=2

δl − E[δl|E] + n−aβ,h

n∑

i=1

[
Y

(p+1)
i (1, ξ∗i )
(p+ 1)!

(
Mi

Ni
− π

)p+1

− E

[
Y

(p+1)
i (1, ξ∗i )
(p+ 1)!

(
Mi

Ni
− π

)p+1
∣∣∣∣∣E
]]

+Oψpβ,h/2,tc((log n)
−1/pβ,hn−2rβ,h) +Oψ1,tc((log n)

−1/pβ,h(min
i

E[Ni|U])−1).

Then by the concentration of Mi/Ni − π given in Lemma SA-2, we have

∆2,3,2 − E[∆2,3,2|E]

=Oψpβ,h/2,tc((log n)
−1/pβ,hn−2rβ,h) +Oψ1,tc((log n)

−1/pβ,h(min
i

E[Ni|U])−1)

+Oψ1,tc

(
n1/2−aβ,h

(
maxi E[Ni|U]3

mini E[Ni|U]4

)1/2
)

+Oψ2/(p+1),tc

(
nrβ,h(min

i
E[Ni|U]−(p+1)/2)

)
.

SA-7.3.7 Proof of Lemma SA-6

For notational simplicity, denote p̂ = 1
n

∑n
i=1 Ti and p = 1

2 tanh(βπ + h) + 1
2 = 1

2π + 1
2 . Then

1

n

n∑

i=1

TiYi
p̂

− 1

n

n∑

i=1

TiYi
p

=
1

n

n∑

i=1

TiYi
p̂

p− p̂

p
.

Taylor expand x 7→ tanh(βx+ h) at x = π, we have

2(p̂− p) =m − tanh(βm + h)

=π + m − π − tanh(βπ + h)− β sech2(βπ + h)(m − π) +O((m − π)2)

=(1− β sech2(βπ + h))(m − π) +O((m − π)2),

where O(·) is up to a universal constant. Together with concentration of 1
n

∑n
i=1 TiYi towards pE[Yi],

we have

1

n

n∑

i=1

TiYi
p̂

− 1

n

n∑

i=1

TiYi
p

= −1− β(1− π2)

1 + π
E[Yi(1,

Mi

Ni
)] +Oψ1(n

−2rβ,h).

SA-7.3.8 Proof of Lemma SA-7

By Lemma SA-2 to Lemma SA-6, we show

nrβ,h(τ̂n − τn) (SA-22)

=n−aβ,h

n∑

i=1

(Ri − E[Ri] + bi)(Wi − π) + ε, (SA-23)
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where Ri =
gi(1,

Mi
Ni

)

1+π +
gi(−1,

Mi
Ni

)

1−π , and bi =
∑

j ̸=i
Eij

Nj
g′j (1, π), and ε is such that condition on U such

that A(U) ∈ A = {A ∈ Rn×n : mini∈[n]
∑

j ̸=iAij ≥ 32 log n},

ε = Oψ1,tc

(
log nmax

i∈[n]
E[Ni|U]−1/2

)
+Oψ1,tc(

√
log nn−rβ,h)

+Oψ1,tc

(
n1/2−aβ,h

(
maxi E[Ni|U]3

mini E[Ni|U]4

)1/2)
+Oψ2/(p+1),tc

(
nrβ,h(min

i
E[Ni|U]−(p+1)/2)

)
. (SA-24)

Following the strategy as in the proof of Theorem 4 in [6], we will show bi is close to Ri: First,
decompose by

∑

j ̸=i

Eij
Nj

g′j(1, π)−Ri

=
∑

j ̸=i

Eij
Nj

g′j(1, π)−
∑

j ̸=i

Eij
nE[G(Ui, Uj)|Uj ]

g′j(1, π) +
∑

j ̸=i

Eij
nE[G(Ui, Uj)|Uj ]

g′j(1, π)−Ri.

By Equation SA-18, condition on U such that A(U) ∈ A,

|
∑

j ̸=i

Eij
Nj

g′j(1, π)−
∑

j ̸=i

Eij
nE[G(Ui, Uj)|Uj ]

g′j(1, π)|≤ Cn−1/2

with probability at least 1 − n−99. Moreover, Eij

E[G(Ui,Uj)|Uj ]
g′j(1, π), j ̸= i are i.i.d condition on

Ui, hence
∑

j ̸=i
Eij

nE[G(Ui,Uj)|Uj ]
g′j(1, π) − Ri = Oψ2((nE[G(Ui, Uj)|Uj ]−1/2) = Oψ2(E[Nj |X]−1/2). It

follows that conditional on U such that A(U) ∈ A,

max
i

|
∑

j ̸=i

Eij
Nj

g′j(1, π)−Ri|= Oψ2,tc(max
i

E[Ni|U]−1/2). (SA-25)

Again using the conditional i.i.d decomposition, Hoeffiding inequality and Un’s concentration for
the two terms respectively,

|n−aβ,h

n∑

i=1

[
∑

j ̸=i

Eij
Nj

g′j(1, π)−Ri](Wi − π)|

≤|n−aβ,h

n∑

i=1

[
∑

j ̸=i

Eij
Nj

g′j(1, π)−Ri](Wi − E[Wi|Un])|

+ nrβ,h |E[Wi|Un]− π|max
i

|
∑

j ̸=i

Eij
Nj

g′j(1, π)−Ri|

=Oψ2(n
1
2
−aβ,h max

i
E[Ni|U]−1/2) +Oψβ,h,tc((log n)

1/pβ,h max
i

E[Ni|U]−1/2) = ε′.

Hence denote the term of stochastic linearization by Gn, i.e.

Gn = n−aβ,h

n∑

i=1

(Ri − E[Ri] +Qi)(Wi − π).
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Since Ri − E[Ri] + Qi’s are i.i.d independent to Wi’s with bounded third moment, we know from
Lemma SA-3 that Gn can be approximated by either a Gaussian or non-Gaussian law, that is order
1, this gives

sup
t∈R

P (τ̂n − τn|U) ≤ t)− P (Gn ≤ t|U)

≤ sup
t∈R

min
u>0

P (Gn ≤ t+ u)− P (Gn ≤ t) + P(ε+ ε′ ≥ u)

≤ sup
t∈R

min
u>0

P (Gn ≤ t+ u)− P (Gn ≤ t+ u) + P(ε+ ε′ ≥ u) + P (t ≤ Gn ≤ t+ u)

≤O(n−1/2) + min
u>0

exp(−(u/r)a) + cu

=O((log n)ar(U)),

where O(·) does not depend on the value of U and

r(U) =n−rβ,h +max
i

E[Ni|U]−1/2 + n1/2−aβ,h

(
maxi E[Ni|U]3

minE[Ni|U]4

)1/2

+ nrβ,h max
i

E[Ni|U]−(p+1)/2.

To analyse the second term, recall E[Ni|U] = ρn
∑

j ̸=iG(Ui, Uj). Hence

E
[
max
i

(E[Ni|U])−1/2
1(A(U) ∈ A)

]

=(nρn)
−1/2E


max

i


 1

n

∑

j ̸=i
G(Ui, Uj)




−1/2

1(A(U) ∈ A)




=O(
√

log n(nρn)
−1/2),

the last line is because with probability at least 1 − n−98, E = {1
2g(Ui) ≤ 1

n

∑
j ̸=iG(Ui, Uj) ≤

2g(Ui),∀1 ≤ i ≤ n} happens, and by maximal inequality, maxi|g(Ui)|−1/2= Oψ2(
√
log n). And on

{A(U) ∈ A} ∩ E, maxi(
1
n

∑
j ̸=iG(Ui, Uj))

−1/2 ≤ (32 log n/n)−1/2, since we assume G is positive.
By similar argument for the last two terms in r(U), we have

E [r(U)1(A(U) ∈ A)] ≤ n−rβ,h +
√

log n(nρn)
−1/2 +

√
log nnrβ,h(nρn)

−(p+1)/2.

Recall that A = {A(U) : mini
∑

j ̸=iAij(U) ≥ 32 log n}. Since
∑

j ̸=iAij(U) ∼ Bin(n−1,E[G(X1, X2)]),
we know from Chernoff bound for Binomials and union bound over i that P(A(U) /∈ A) ≤ n−99.
The conclusion then follows.

SA-7.3.9 Proof of Lemma SA-8

Our proof for Lemma SA-2 to Lemma SA-6 relies on the following devices:
(1) Taylor expansion of tanh(·) in the inverse probability weighting for unbiased estimator, and

taylor expansion of Yi(ℓ, ·) at E[Ti] for ℓ ∈ {0, 1}. Then the higher order terms are in terms of m−π
and Mi

Ni
− π. In Lemma SA-4 (taking Xi ≡ 1), we show

∥m∥ψ1 ≤ Kn−1/4,
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and in Lemma SA-2, we show

∥Mi

Ni
∥ψ1 ≤ Kn−1/4 + K(nρn)

−1/2,

where K is some constant that does not depend on β. This shows for the higher order terms, we
always have

m2 = m(1 + oP(1)), (Mi/Ni)
2 = (Mi/Ni)(1 + oP(1)),

where the oP(·) terms does not depend on β.
(2) Condition i.i.d decomposition based on the de-Finetti’s lemma (Lemma SA-1). Suppose Un

is the latent variable from Lemma SA-1, we use decompositions based on Un: For Lemma SA-3 to
Lemma SA-5, we break down higher order terms in the form

F (W,E)− E[F (W,E)|E]

=F (W,E)− E[F (W,E)|E,Un] + E[F (W,E)|E,Un]− E[F (W,E)|E].

For the first part F (W,E)−E[F (W,E)|E,Un], we use the conditional i.i.d of Wi’s given Un. For the
second part, we use concentration from Lemma SA-2 that there exists a constant K not depending

on β or n, such that ∥Un∥ψ1 ≤ Kn1/4 and the effective term ∥tanh(
√

β
nUn)∥ψ1 ≤ Kn−1/4.

In particular, the rate of concentration for conditional i.i.d Berry-Esseen and concentration of

tanh(
√

β
nUn) does not depend on β.

By the same proof from Lemma SA-2 to Lemma SA-6, we can show in τ̂n − τn, the second and
higher order terms in terms of Wi−π can always be dominated by the first order terms, with a rate
that does not depend on β.

The conclusion then follows from the two devices and the same proof logic of Lemma SA-2 to
Lemma SA-6.

SA-7.4 Proof for Section SA-5

SA-7.4.1 Proof of Lemma SA-1

Define g(Uj) = E[G(Ui, Uj)|Uj ], for i ̸= j. Reordering the terms,

τa =
n− 1

n2

∑

j∈[n]

Tj
1/2

hj(1,Mj/Nj)−
1− Tj
1− 1/2

hj(−1,Mj/Nj).
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Hence τa(i) − τa has the representation given by

τa(i) − τa

=− 1

n

Ti
1/2

hi

(
1,
Mi

Ni

)
+

1

n2

∑

j∈[n]

Tj
1/2

hj

(
1,
Mj

Nj

)
+

1

n

1− Ti
1− 1/2

hi

(
1,
Mi

Ni

)

− 1

n2

∑

j∈[n]

1− Tj
1− 1/2

hj

(
1,
Mj

Nj

)
(SA-26)

=− 1

n

( Ti
1/2

hi(1, 0)− 1/2E[hi(1, 0)]
)
+

1

n

( 1− Ti
1− 1/2

hi(−1, 0)− (1− 1/2)E[hi(−1, 0)]
)

+Oψ2,tc(n
−1(nρn)

− 1
2 ) (SA-27)

=− 1

n

(hi(1, 0)
1/2

+
hi(−1, 0)

1− 1/2

)
(Ti − 1/2) +Oψ2,tc(n

−1(nρn)
− 1

2 ) (SA-28)

=− 1

n

(fi(1, 0)
1/2

+
fi(−1, 0)

1− 1/2

)
(Ti − 1/2) +Oψ2,tc(n

−1(nρn)
− 1

2 ) + oP(n
−1), (SA-29)

where the second to last line is due to − 1
n

1
1/21/2(hi(1, 0)−E[hi(1, 0)])+ 1

n
1

1−1/2(1−1/2)(hi(−1, 0)−
E[hi(−1, 0)]) = − 2

nεi +
2
nεi = 0.

Now we look at b-part. For representation purpose, we look at only the treatment part. The
control part can be analysized by in the same way. Reordering the terms,

τ b =
1

n

∑

i∈[n]
τ b(i) =

1

n

∑

i∈[n]

1

n

∑

j∈[n]

Tj
1/2

[
hj

(
1,
Mj

Nj (i)

)
− hj

(
1,
Mj

Nj

)]

=
1

n

∑

j∈[n]

Tj
1/2

1

n

∑

i∈[n]

[
hj

(
1,
Mj

Nj (i)

)
− hj

(
1,
Mj

Nj

)]
.

Hence τ b(i) − τ b has the representation given by

τ b(i) − τ b =
1

n

∑

j∈[n]

Tj
1/2

[
hj

(
1,
Mj

Nj (i)

)
− 1

n

∑

ι∈[n]
hj

(
1,
Mj

Nj (ι)

)]
. (SA-30)

The analysis follows from a Taylor expansion of hj(1, ·). For some ξ∗j,i between Mj

Nj (i)
and 0 for each

j, i,

hj

(
1,
Mj

Nj (i)

)
=hj(1, 0) + ∂2h(1, 0)

(Mj

Nj (i)

− 0
)
+

1

2
∂2,2h(1, 0)

(Mj

Nj (i)

− 0
)2

(SA-31)

+
1

6
∂2,2,2h(1, ξ

∗
j,i)
(Mj

Nj (i)

− 0
)3
, (SA-32)

where we have used ∂2hj(1, ·) = ∂2[h(1, ·) + εj ] = ∂2h(1, ·).

Part 1: Linear Terms
Mj

Nj (i)

− 1

n

∑

ι∈[n]

Mj

Nj (ι)

=
∑

l ̸=i

Elj

N
(i)
j

Wl −
1

n

∑

ι∈[n]

∑

l ̸=ι

Elj

N
(ι)
j

Wl

=
n∑

l=1

EljWl

(
1

N
(i)
j

− 1

n

∑

ι∈[n],ι̸=l

1

N
(ι)
j

)
− Eij

N
(i)
j

Wi.

(SA-33)
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By a decomposition argument,

1

N
(i)
j

− 1

n

∑

ι∈[n],ι̸=l

1

N
(ι)
j

=
1

N
(i)
j

− 1

n− 1

∑

ι∈[n],ι̸=l

1

N
(ι)
j

+
1

(n− 1)n

∑

ι∈[n],ι̸=l

1

N
(ι)
j

=
1

n− 1

∑

ι∈[n],ι ̸=l

Eji − Ejι

N
(i)
j N

(ι)
j

+
1

(n− 1)n

∑

ι∈[n],ι̸=l

1

N
(ι)
j

= n−1(nρn)
−1Eij − ρng(Uj)

ρng(Uj)2
+

1

(n− 1)n

∑

ι∈[n],ι̸=l

1

N
(ι)
j

.

Hence
n∑

l=1

EljWl

(
1

N
(i)
j

− 1

n

∑

ι∈[n],ι ̸=l

1

N
(ι)
j

)

=(nρn)
−1Eij − ρng(Uj)

ρng(Uj)2
1

n

n∑

l=1

EljWl +

∑n
l=1EljWl

N
(i)
j

Oψ2,tc((nρn)
− 3

2 )

+
1

n− 1

∑

ι∈[n],ι ̸=l

∑n
l=1EljWl

nN
(ι)
j

.

Condition on Uj , (EljWl : l ̸= j) are i.i.d mean-zero, hence Bernstein inequality gives 1
n

∑n
l=1EljWl =

Oψ2(
√
n−1ρn) +Oψ1(n

−1), which implies

(nρn)
−1Eij − ρng(Uj)

ρng(Uj)2
1

n

n∑

l=1

EljWl = Oψ2((nρn)
− 3

2 ) +Oψ1((nρn)
−2),

1

n− 1

∑

ι∈[n],ι̸=l

∑n
l=1EljWl

nN
(ι)
j

= Oψ2(n
− 3

2 ρ
− 1

2
n ) +Oψ1(n

−2).

Putting back into Equation (SA-33),

Mj

Nj (i)

− 1

n

∑

ι∈[n]

Mj

Nj (ι)

= − Eij

N
(i)
j

Wi +Oψ1((nρn)
− 3

2 ).

Looking at contribution from the first order term in Taylor expanding hj(1, ·) to τ b(i) − τ b in Equa-
tion (SA-30),

1

n

∑

j∈[n]
∂2h(1, 0)

Tj
1/2

[
Mj

Nj (i)

− 1

n

∑

ι∈[n]

Mj

Nj (ι)

]

=−
∑

j∈[n]
∂2h(1, 0)Wi

1

n

Eij

N
(i)
j

Tj
1/2

+Oψ1,tc((nρn)
− 3

2 )

=−Wi
1

n

∑

j∈[n]
∂2h(1, 0)

Eij
nρng(Uj)

Tj
1/2

−Wi
1

n

∑

j∈[n]
∂2h(1, 0)

Eij

N
(i)
j

nρng(Uj)−Nj

nρng(Uj)

Tj
1/2

+Oψ1,tc((nρn)
− 3

2 )

=−Wi
1

n

∑

j∈[n]
∂2h(1, 0)

Eij
nρng(Uj)

Tj
1/2

+Oψ1,tc((nρn)
− 3

2 ).
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Since (EijTj/g(Uj) : j ∈ [n]) are independent condition on Ui, standard concentration inequality
gives

1

n

∑

j∈[n]
∂2h(1, 0)

Tj
1/2

[
Mj

Nj (i)

− 1

n

∑

ι∈[n]

Mj

Nj (ι)

]

=−Wi
1

n

∑

j∈[n]
∂2h(1, 0)

Eij
nρng(Uj)

Tj
1/2

+Oψ1,tc((nρn)
− 3

2 )

=−Wi∂2h(1, 0)
1

n

∑

j∈[n]

Eij
nρng(Uj)

Tj
1/2

+Oψ1,tc((nρn)
− 3

2 )

=− ∂2h(1, 0)
Wi

n
E
[

Eij
ρng(Uj)

∣∣∣∣Ui
]
+Oψ1,tc((nρn)

− 3
2 ).

Since we assumed ∂2h(1, 0) = ∂2f(1, 0) + oP(1) = ∂2fj(1, 0) + oP(1) where

1

n

∑

j∈[n]
∂2h(1, 0)

Tj
1/2

[
Mj

Nj (i)

− 1

n

∑

ι∈[n]

Mj

Nj (ι)

]

=− Wi

n
E
[
Eij∂2fj(1, 0)

ρng(Uj)

∣∣∣∣Ui
]
+Oψ1,tc((nρn)

− 3
2 ) + oP(n

−1).

Together with the leading term in Equation (SA-30), we have

n
∑

i∈[n]

(
1

n

∑

j∈[n]
∂2hj(1, 0)

Tj
1/2

[
Mj

Nj (i)

− 1

n

∑

ι∈[n]

Mj

Nj (ι)

]
+ τa(i) − τa

)
·

(
2

nq

∑

j∈Iq
∂2hj(1, 0)

Tj
θq

[
Mj

Nj (i)

− 1

n

∑

ι∈[n]

Mj

Nj (ι)

]
+ τa(i) − τa

)

=
n

n2

∑

i∈[n]

(
E
[
Eij∂2fj(1, 0)

ρng(Uj)

∣∣∣∣Ui
]
+
fi(1, 0)

1/2
(Ti − 1/2)

)
·

(
E
[
Eij∂2fj(1, 0)

ρng(Uj)

∣∣∣∣Ui
]
+
fi(1, 0)

1/2
(Ti − 1/2)

)
+Oψ1,tc((nρ

3
n)

−1) + oP(1)

=
n2l
n2

E
[(

E
[
Eij∂2fj(1, 0)

ρng(Uj)

∣∣∣∣Ui
]
+
fi(1, 0)

1/2
(Ti − 1/2)

)
·

(
E
[
Eij∂2fj(1, 0)

ρng(Uj)

∣∣∣∣Ui
]
+
fi(1, 0)

1/2
(Ti − 1/2)

)]
+Oψ1,tc((nρ

3
n)

−1) + oP(1)

=e⊤s E[SℓS⊤
ℓ ]eq +Oψ1,tc((nρ

3
n)

−1) + oP(1).

Part 2: Higher Order Terms For the second order terms, first notice that if l /∈ [n], then
(
Mj

Nj (i)

)2

− 1

n

∑

ι∈[n],ι ̸=l

(
Mj

Nj (ι)

)2

=
1

n

∑

ι∈[n],ι̸=l

(
Mj

Nj (i)

+
Mj

Nj (ι)

)
Mj(Eij − Eιj)− (EijWi − EιjWι)Nj + EijEιj(Wi −Wι)

N
(i)
j N

(ι)
j

=Oψ2,tc((nρn)
− 3

2 ),
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where we have used (Mj/Nj)ι = Oψ2((nρn)
− 1

2 ) and N−1
j = Oψ2((nρn)

−1). If l ∈ [n], then again
(
Mj

Nj (i)

)2

− 1

n

∑

ι∈[n],ι ̸=l

(
Mj

Nj (ι)

)2

=

(
Mj

Nj (i)

)2

− 1

n− 1

∑

ι∈[n],ι ̸=l

(
Mj

Nj (ι)

)2

+
1

(n− 1)n

∑

ι∈[n],ι ̸=l

(
Mj

Nj (ι)

)2

=Oψ2,tc((nρn)
− 3

2 ).

Hence

n
∑

i∈[n]

(
∂2,2h(1, 0)

2

n

∑

j∈[n]
Tj

[(Mj

Nj (i)

)2
− 1

n

∑

ι∈[n]

(Mj

Nj (ι)

)2])
·

(
∂2,2h(1, 0)

2

nq

∑

j∈Iq
Tj

[(Mj

Nj (i)

)2
− 1

n

∑

ι∈[n]

(Mj

Nj (ι)

)2])
= Oψ2,tc((nρ

3
n)

−1).

For the third order residual, observe that (
Mj

Nj (ι)
)3 = Oψ2((nρn)

−3/2). Then

n
∑

i∈[n]

(
2

n

∑

j∈[n]
Tj

[
∂2,2,2h

(
1, ξ∗j,i

)(Mj

Nj (i)

)3
− 1

n

∑

ι∈[n]
∂2,2,2h

(
1, ξ∗j,ι

)(Mj

Nj (ι)

)3])
·

(
2

nq

∑

j∈Iq
Tj

[
∂2,2,2h

(
1, ξ∗j,i

)(Mj

Nj (i)

)3
− 1

n

∑

ι∈[n]
∂2,2,2h

(
1, ξ∗j,ι

)(Mj

Nj (ι)

)3])

= Oψ2,tc((nρ
3
n)

−1).

The conclusion then follows from Equations (SA-26), (SA-30) and (SA-31).

SA-7.5 Proof of Lemma SA-2

Define r(x) = (1, x)⊤. Denote π = E[Wi] = 2E[Ti]− 1. Then

Case 1: β < 1

First, consider the gram-matrix. Take ζi :=
√
nρn(

Mi
Ni

−π). Then 1 ≲ V[ζi] ≲ 1. Take bn =
√
nρnhn.

Take

Bn :=
1

nbn

n∑

i=1

r
( ζi
bn

)
r
( ζi
bn

)⊤
K
( ζi
bn

)
,

where r : R → R2 is given by r(u) = (1, u)⊤. Take Q to be the probability measure of ζi given E.
Then

B := E[Bn|E] =

[ ∫∞
−∞

1
bn
K( xbn )dQ(x)

∫∞
−∞

x
bn

1
bn
K( xbn )dQ(x)∫∞

−∞
x
bn

1
bn
K( xbn )dQ(x)

∫∞
−∞( xbn )

2 1
bn
K( xbn )dQ(x)

]
.

In particular, λmin(B) ≳ 1. Now we want to show each entry of Bn converge to those of B. Take

Fp,q(W) := e⊤p Bneq =
1

nbn

n∑

i=1

( ζi
bn

)p+q
K
( ζi
bn

)
, p, q ∈ {0, 1}.
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Denote ∂j to be the partial derivative w.r.p to Wj . Since K is Lipschitz with bounded support,

|∂jFp,q(W)|≲ 1

b2n

1

n

n∑

i=1

∣∣∣∂j
(Mi

Ni
− π

)∣∣∣ ≲ 1

b2n

1

n

n∑

i=1

Eij
Ni

. (SA-34)

Condition on E,

Fp,q(W) = E[Fp,q(W)|E] +Oψ2

( n∑

j=1

|∂jFp,q(W)|2
)
= e⊤p Beq +Oψ2

( 1

nb4n

1

n

n∑

j=1

( n∑

i=1

Eij
Ni

)2)
.

Hence for all p, q ∈ {0, 1},

e⊤p Bneq = e⊤p Beq +Oψ2((nb
4
n)

−1).

Since both Bn and B are two by two matrices, ∥Bn −B∥op ≲ Oψ2((nb
4
n)

−1). By Weyl’s Theorem,

|λmin(Bn)− λmin(B)|≤ ∥Bn −B∥op ≲ (nb4n)
−1, (SA-35)

and together with λmin(B) ≳ 1, implies λmin(Bn) ≳ 1. Take

Σn :=
1

nb2n

n∑

i=1

r
( ζi
bn

)
r
( ζi
bn

)⊤
K2
( ζi
bn

)
V[Yi|ζi].

Hence variance can be bounded by

V[γ̂0|E,W] = eT0 B
−1
n ΣnB

−1
n e0 ≲ (nbn)

−1, (SA-36)

V[γ̂1|E,W] = nρne
T
1 B

−1
n ΣnB

−1
n e1 ≲ (nρn)(nb

3
n)

−1 = ρnb
−3
n . (SA-37)

Next, consider the bias term. Since f(1, ·) ∈ C2, whenever |Mi
Ni

− π|≤ hn = (nρn)
−1/2bn,

f(1,Mi/Ni) = f(1, π) + ∂2f(1, π)
(Mi

Ni
− π

)
+O

((Mi

Ni
− π

)2)

= f(1, π) + ∂2f(1, π)
(Mi

Ni
− π

)
+O((nρn)

−1b2n).

Hence using the fourth and third lines above respectively,

E[γ̂0|E,W] = eT0 B
−1
n

[
1

nbn

n∑

i=1

r
( ζi
bn

)
K
( ζi
bn

)
f
(
1,
Mi

Ni

)]

= eT0 B
−1
n

[
1

nbn

n∑

i=1

r
( ζi
bn

)
K
( ζi
bn

)(
r
( ζi
bn

)⊤
(f(1, π),

1√
nρn

∂2f(1, π))
⊤ +Oψ2((nρn)

− 1
2 )

)]

= f(1, π) +Oψ2((nρn)
− 1

2 ),

E[γ̂1|E,W] =
√
nρne

T
1 B

−1
n

[
1

nbn

n∑

i=1

r
( ζi
bn

)
K
( ζi
bn

)
f
(
1,
Mi

Ni

)]

=
√
nρne

T
1 B

−1
n

[
1

nbn

n∑

i=1

r
( ζi
bn

)
K
( ζi
bn

)(
r
( ζi
bn

)⊤
(f(1, π),

1√
nρn

∂2f(1, π))
⊤ +Oψ2((nρn)

−1)

)]

= ∂2f(1, π) +Oψ2((nρn)
− 1

2 ),
(SA-38)
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Putting together Equations (SA-36) and (SA-38),

γ̂0 − γ0 = OP((nρn)
− 1

2 + (nbn)
− 1

2 ), γ̂1 − γ1 = OP((nρn)
− 1

2 + ρnb
−3
n ).

Hence any bn such that bn = Ω(n−1/4 + ρ
1/3
n ) will make (γ̂0, γ̂1) a consistent estimator for (γ0, γ1).

For any 0 ≤ ρn ≤ 1 such that nρn → ∞, such a sequence bn exists.

Case 2: β = 1

The order Mi
Ni

is n−1/4 if lim infn→∞ nρ2n > c for some c > 0; and is (nρn)
−1/2 if nρ2n = o(1). We

consider these two cases separately.

Case 2.1: lim infn→∞ nρ2n > c for some c > 0 Take ηi = n
1
4 (Mi

Ni
− π). Take dn = n1/4hn. And

with the same r defined in Case 1,

Dn :=
1

ndn

n∑

i=1

r
( ηi
dn

)
r
( ηi
dn

)⊤
K
( ηi
dn

)
, D = E[Dn].

Under the assumption lim infn→∞ nρ2n ≤ c for some c > 0, we have 1 ≲ V[ηi] ≲ 1. Hence λmin(D) ≳
1. To study the convergence between Dn and D, again consider for p, q ∈ {0, 1},

Gp,q(W) := e⊤p Dneq =
1

ndn

n∑

i=1

( ηi
dn

)p+q
K
( ηi
dn

)
=

1

n5/4hn

n∑

i=1

(
h−1
n (

Mi

Ni
− π)

)p+q
K
(
h−1
n (

Mi

Ni
− π)

)
.

Still let Un be the latent variable from Lemma SA-1, Wi’s are independent conditional on Un. Hence
by similar argument as Equation (SA-34), we can show

Gp,q(W) = E[Gp,q(W)|Un,E] +Oψ2((nd
4
n)

−1).

Moreover, recall we denote by ωi ∈ [k] the block unit i belongs to, then

E[Gp,q(W)|Un,E] =
∑

W∈{−1,1}n

n∏

i=1

p(Uωi)
Ws(1− p(Uωi))

1−WsGp,q(W),

p(Ul) = P(Wi = 1|Uℓ) = 1
2(tanh(

√
βℓ/nUn + hℓ) + 1), i ∈ Iℓ. Take the derivative term by term,

∂Uℓ
E[Gp,q(W)|Un,E] =

∑

j∈Iℓ
EW−j [Gp,q(Wj = 1,W−j)−Gp,q(Wj = −1,W−j)]p′(Uℓ).

Using Lipschitz property of x 7→ (x/hn)
p+qK(x/hn),

|Gp,q(Wj = 1,W−j)−Gp,q(Wj = −1,W−j)|≲
1

n5/4hn

n∑

i=1

1

hn

Eij
Ni

.

Hence for all ℓ ∈ C,

|∂Uℓ
E[Gp,q(W)|Un,E]|≲

∑

j∈Iℓ

1

n5/4hn

n∑

i=1

1

hn

Eij
Ni

∥p′∥∞ ≲
1

n3/4h2n
.
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Moreover, for all ℓ ∈ C, ∥Uℓ∥φ2 ≲ n1/4. Together, this gives

E[Gp,q(W)|Un,E]− E[Gp,q(W)|E] = OP((n
1/2h2n)

−1) = OP(d
−2
n ).

Hence if we take dn ≫ 1 (which implies nd4n ≫ 1), then Gp,q(W) = E[Gp,q(W)|E]+oP(1), implying
∥Dn −D∥2 = oP(1) and λmin(Dn)− λmin(D) = oP(1), making λmin(Dn) ≳P 1. Take

Υn :=
1

nd2n

n∑

i=1

r
( ηi
dn

)
r
( ηi
dn

)⊤
K2
( ηi
dn

)
V[Yi|ηi].

Hence variance can be bounded by

V[γ̂0|E,W] = eT0 D
−1
n ΥnD

−1
n e0 ≲ (ndn)

−1, (SA-39)

V[γ̂1|E,W] = n1/2eT1 D
−1
n ΥnD

−1
n e1 ≲ n1/2(nd3n)−1 = n−1/2d−3

n . (SA-40)

By similar argument as in Case 1, assume dn ≫ 1, we can show

E[γ̂0|E]− γ0 = O(n−1/4 + n−1/2d2n), E[γ̂1|E]− γ1 = O(n−1/4d2n).

Hence if we choose dn such that 1 ≪ dn ≪ n1/8, then (γ̂0, γ̂1) is a consistent estimator for (γ0, γ1).
The only assumption we made for the existence of such a dn is lim infn→∞ nρ2n ≥ c for some c > 0.

Case 2.2: nρ2n = o(1) Take ηi :=
√
nρn(

Mi
Ni

− π), dn =
√
nρnhn. By similar decomposition based

on latent variables, we can show if nρn → ∞ as n→ ∞, then there exists hn such that (γ̂0, γ̂1) is a
consistent estimator for (γ0, γ1).
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