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This paper presents new uniform Gaussian strong approximations for
empirical processes indexed by classes of functions based on d-variate ran-
dom vectors (d ≥ 1). First, a uniform Gaussian strong approximation is es-
tablished for general empirical processes indexed by possibly Lipschitz func-
tions, improving on previous results in the literature. In the setting considered
by Rio (Probab. Theory Related Fields 98 (1994) 21–45), and if the function
class is Lipschitzian, our result improves the approximation rate n−1/(2d)

to n−1/max{d,2}, up to a polylog(n) term, where n denotes the sample size.
Remarkably, we establish a valid uniform Gaussian strong approximation at
the rate n−1/2 logn for d = 2, which was previously known to be valid only
for univariate (d = 1) empirical processes via the celebrated Hungarian con-
struction (Komlós, Major and Tusnády, Z. Wahrsch. Verw. Gebiete 32 (1975)
111–131). Second, a uniform Gaussian strong approximation is established
for multiplicative separable empirical processes indexed by possibly Lips-
chitz functions, which addresses some outstanding problems in the literature
(Chernozhukov, Chetverikov and Kato, Ann. Statist. 42 (2014) 1564–1597,
Section 3). Finally, two other uniform Gaussian strong approximation results
are presented when the function class is a sequence of Haar basis based on
quasi-uniform partitions. Applications to nonparametric density and regres-
sion estimation are discussed.

1. Introduction. Let xi ∈ 𝒳 ⊆ ℝd , i = 1, . . . , n, be independent and identical dis-
tributed (i.i.d.) random vectors supported on a background probability space (Ω,ℱ,ℙ). The
classical empirical process is

(1) Xn(h) = 1√
n

n∑︂
i=1

(︁
h(xi ) −𝔼[h(xi )])︁, h ∈ ℋ,

where ℋ is a possibly n-varying class of functions. Following the empirical process literature,
and assuming ℋ is “nice”, the stochastic process (Xn(h) : h ∈ ℋ) is said to be Donsker if it
converges in law as n → ∞ to a Gaussian process in ℓ∞(ℋ), the space of uniformly bounded
real functions on ℋ. This weak convergence result is typically denoted by

(2) Xn ⇝ Z, in ℓ∞(ℋ),

where (Z(h) : h ∈ ℋ) is a mean-zero Gaussian process with covariance 𝔼[Z(h1)Z(h2)] =
𝔼[h1(xi )h2(xi )] − 𝔼[h1(xi )]𝔼[h2(xi )] for all h1, h2 ∈ ℋ when ℋ is not n-varying, or its
limit as n → ∞ otherwise. See [34] and [20] for textbook overviews.

A more challenging endeavour is to construct a uniform Gaussian strong approxima-
tion for the empirical process Xn. That is, if the background probability space is “rich”
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enough, or is otherwise properly enlarged, the goal is to construct a sequence of mean-
zero Gaussian processes (Zn(h) : h ∈ ℋ) with the same covariance structure as Xn (i.e.,
𝔼[Xn(h1)Xn(h2)] = 𝔼[Zn(h1)Zn(h2)] for all h1, h2 ∈ ℋ) such that

(3) ∥Xn − Zn∥ℋ = sup
h∈ℋ

⃓⃓
Xn(h) − Zn(h)

⃓⃓ = O(ϱn), almost surely (a.s.),

for a nonrandom sequence ϱn → 0 as n → ∞. Such a refined approximation result is useful
in a variety of contexts. For example, it gives a distributional approximation for non-Donsker
empirical processes, for which (2) does not hold, and it also offers a precise quantification
of the quality of the distributional approximation when (2) holds. In addition, (3) is typically
established using nonasymptotic probability concentration inequalities, which can be used
to construct statistical inference procedures requiring uniformity over ℋ and/or the class of
underlying data generating processes. Furthermore, because the Gaussian process Zn is “pre-
asymptotic”, it can offer a better finite sample approximation to the sampling distribution of
Xn than the large sample approximation based on the limiting Gaussian process Z in (2).

There is a large literature on strong approximations for empirical processes, offering dif-
ferent levels of tightness for the bound ϱn in (3). In particular, the univariate case (d = 1) is
mostly settled. A major breakthrough was accomplished by [24], KMT hereafter, who intro-
duced the celebrated Hungarian construction to prove the optimal result ϱn = n−1/2 logn for
the special case of the uniform empirical distribution process: xi ∼ Uniform(𝒳 ), 𝒳 = [0,1],
and ℋ = {1(· ≤ x) : x ∈ [0,1]}, where 1(·) denotes the indicator function. See [5] and [26] for
more technical discussions on the Hungarian construction, and [14, 25] and [29] for textbook
overviews. The KMT result was later extended by [18] and [19] to univariate empirical pro-
cesses indexed by functions with uniformly bounded total variation: for xi ∼ ℙX supported
on 𝒳 = ℝ and continuously distributed, the authors obtained

(4) ϱn = n−1/2 logn,

in (3), with ℋ satisfying a bounded variation condition. More recently, [9], Lemma SA26,
gave a self-contained proof of a slightly generalized KMT result allowing for a larger class
of distributions ℙX . See Remark 1 for details. As a statistical application, the authors con-
sidered univariate kernel density estimation [35], with bandwidth b → 0 as n → ∞, and
demonstrated that the optimal univariate KMT strong approximation rate (nb)−1/2 logn is
achievable, where nb is the effective sample size.

Establishing strong approximations for general empirical processes with d ≥ 2 is more dif-
ficult, since the KMT approach does not easily generalize to multivariate data. Foundational
results include [23, 28], and [30]. In particular, assuming the function class ℋ is uniformly
bounded, has bounded total variation, and satisfies a VC-type condition, among other regu-
larity conditions discussed precisely in the upcoming sections, [30] obtained

(5) ϱn = n−1/(2d)
√︂

logn, d ≥ 2,

in (3). This result is tight under the conditions imposed [2], and demonstrates an unfortunate
dimension penalty in the convergence rate of the d-variate uniform Gaussian strong approx-
imation. As a statistical application, the author also considered the kernel density estimator
with bandwidth b → 0 as n → ∞, and established (3) with

ϱn = (︁
nbd)︁−1/(2d)

√︂
logn, d ≥ 2,

where nbd is the effective sample size.
While Rio’s [30] KMT strong approximation result is unimprovable under the conditions

he imposed, it has two limitations:
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1. The class of functions ℋ may be too large, and further restrictions can open the door
for improvements. For example, in his application to kernel density estimation, [30], Sec-
tion 4, assumed that the class ℋ is Lipschitzian to verify the sufficient conditions of his
strong approximation theorem, but his theorem did not exploit the Lipschitz property in itself.
(The Lipschitzian assumption is essentially without loss of generality in the kernel density
estimation application.) It is an open question whether the optimal univariate KMT strong
approximation rate (4) is achievable when d ≥ 2, under additional restrictions on ℋ.

2. As discussed by Chernozhukov, Chernozhukov and Kato ([13], Section 3), applying
Rio’s [30] strong approximation result directly to nonparametric local smoothing regression,
a “local empirical process” in their terminology, leads to an even more suboptimal strong
approximation rate in (3). For example, in the case of kernel regression estimation with d-
dimensional covariates, Rio’s [30] strong approximation would treat all d + 1 variables (co-
variates and outcome) symmetrically, and thus it will give a strong approximation rate in (3)
of the form

ϱn = (︁
nbd+1)︁−1/(2d+2)

√︂
logn, d ≥ 1,(6)

where b → 0 as n → ∞, and under standard regular conditions. The main takeaway is that
the resulting effective sample size is now nbd+1 when in reality it should be nbd , since only
the d-dimensional covariates are smoothed out for estimation of the conditional expectation.
It is this unfortunate fact that prompted [13] to develop strong approximation methods that
target the scalar suprema of the stochastic process, suph∈ℋ |Xn(h)|, instead of the stochastic
process itself, (Xn(h) : h ∈ ℋ), as a way to circumvent the suboptimal strong approximation
rates that would emerge from deploying directly Rio’s [30] result.

This paper presents new uniform Gaussian strong approximation results for empirical pro-
cesses that address the two aforementioned limitations. Section 3 studies the general empiri-
cal process (1), and establishes a uniform Gaussian strong approximation explicitly allowing
for the possibility that ℋ is Lipschitzian (Theorem 1). This result not only encompasses, but
also generalizes previous results in the literature by allowing for d ≥ 1 under more generic
entropy conditions and weaker conditions on the underlying data generating process. For
comparison, if we impose the regularity conditions in [30] and also assume ℋ is Lipschitzian,
then our result (Corollary 2) verifies (3) with

ϱn = n−1/d
√︂

logn + n−1/2 logn, d ≥ 1,

thereby improving (5), in addition to matching (4) when d = 1; see Remark 1 for details.
Remarkably, we demonstrate that the optimal univariate KMT strong approximation rate
n−1/2 logn is achievable when d = 2, in addition to achieving the better approximation rate
n−1/d

√
logn when d ≥ 3. Applying our result to the kernel density estimation example, we

obtain the improved strong approximation rate (nbd)−1/d
√

logn + (nbd)−1/2 logn, d ≥ 1,
under the same conditions imposed in prior literature. We thus show that the optimal uni-
variate KMT uniform Gaussian strong approximation holds in (3) for bivariate kernel density
estimation. Theorem 1 also allows for other entropy notions for ℋ beyond the classical VC-
type condition, and delivers improvements over [23]. See Remark 2 for details. Section 3
discusses how our improvements are achieved, and outstanding technical roadblocks.

Section 4 is motivated by the second aforementioned limitation in prior uniform Gaussian
strong approximation results, and thus studies the residual-based empirical process:

(7) Rn(g, r) = 1√
n

n∑︂
i=1

(︁
g(xi )r(yi) −𝔼[g(xi )r(yi)|xi])︁, (g, r) ∈ 𝒢×ℛ,

for zi = (xi , yi), i = 1, . . . , n, a random sample now also including an outcome variable
yi ∈ ℝ. Our terminology reflects the fact that g(xi )r(yi)−𝔼[g(xi)r(yi)|xi] = g(xi )ϵi(r) with
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ϵi(r) = r(yi) − 𝔼[r(yi)|xi], which can be interpreted as a residual in nonparametric local
smoothing regression settings. In statistical applications, g(·) is typically an n-varying local
smoother based on kernel, series, or nearest-neighbor methods, while r(·) is some transfor-
mation such as r(y) = y for conditional mean or r(y) = 1(y ≤ ·) for conditional distribution
estimation. [13], Section 3.1, call these special cases of Rn a local empirical process.

The residual-based empirical process (Rn(g, r) : (g, r) ∈ 𝒢×ℛ) may be viewed as a gen-
eral empirical process (1) based on the sample (zi : 1 ≤ i ≤ n), and thus available strong
approximation results can be applied directly, including [23, 30], and our new Theorem 1.
However, those off-the-shelf results require stringent assumptions and can deliver subopti-
mal approximation rates. First, available results require zi to admit a bounded and positive
Lebesgue density on [0,1]d+1, possibly after some specific transformation, thereby impos-
ing strong restrictions on the marginal distribution of yi . Second, available results can lead
to the incorrect effective sample size for the strong approximation rate. For example, for a
local empirical process where g(·) denotes n-varying local smoothing weights based on a
kernel function with bandwidth b → 0 as n → ∞, and r(y) = y, [30] gives the approxima-
tion rate (6), and our refined Theorem 1 for general empirical processes indexed by Lipschitz
functions gives a uniform Gaussian strong approximation rate

ϱn = (︁
nbd+1)︁−1/(d+1)

√︂
logn + (︁

nbd)︁−1/2 logn,(8)

where the effective sample size is still nbd+1. This is suboptimal because nbd is the (point-
wise) effective sample size for the kernel regression estimator.

A key observation underlying the potential suboptimality of strong approximation results
for local regression empirical processes is that all components of zi = (xi , yi) are treated
symmetrically. Thus, Section 4 presents a novel uniform Gaussian strong approximation for
the residual-based empirical process (Theorem 2), which explicitly exploits the multiplica-
tive separability of ℋ = 𝒢 × ℛ and the possibly Lipschitz continuity of the function class,
while also removing stringent assumptions imposed on the underlying data generating pro-
cess. When applied to the local kernel regression empirical processes, our best result gives a
uniform Gaussian strong approximation rate

ϱn = (︁
nbd)︁−1/(d+2)

√︂
logn + (︁

nbd)︁−1/2 logn,(9)

thereby improving over both [30] leading to (5), and Theorem 1 leading to (8). The correct
effective sample size nbd is achieved, under weaker regularity conditions. As a statistical
application, Section 4.1 leverages Theorem 2 to establish the best-known uniform Gaussian
strong approximation result for local polynomial regression estimators [17].

Following [30], the proof of Theorem 1 in Section 3 first approximates in mean square the
class of functions ℋ using a Haar basis over carefully constructed disjoint dyadic cells, and
then applies the celebrated Tusnády’s lemma [29], Chapter 10, for a textbook introduction,
to construct a strong approximation. It thus requires balancing two approximation errors: a
projection error (“bias”) emerging from the mean square projection based on a Haar basis,
and a coupling error (“variance”) emerging from the coupling construction for the projected
process. A key observation in our paper is that both errors can be improved by explicitly
exploiting a Lipschitz assumption on ℋ. However, it appears that to achieve the univari-
ate KMT uniform Gaussian strong approximation for the general empirical process (1) with
d ≥ 3, a mean square projection based on a higher-order function class would be needed to
improve the projection error, but no coupling methods available in the literature for the re-
sulting projected process. The proof of Theorem 2 in Section 4 employs a similar projection
and coupling decomposition approach, but treats 𝒢 and ℛ separately in order to leverage the
multiplicative separability of the residual process (Rn(g, r) : (g, r) ∈ 𝒢 × ℛ). In particular,
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the proof designs cells for projection and coupling approximation that are asymmetric in the
direction of xi and yi components to obtain the uniform Gaussian strong approximation. This
distinct proof strategy relaxes some underlying assumptions (most notably, on the distribu-
tion of yi ), and delivers a better strong approximation rate for some local empirical processes
than what would be obtained by directly applying Theorem 1.

In general, however, neither Theorem 1 nor Theorem 2 dominates each other, nor their
underlying assumptions imply each other, and therefore both are of interest, depending on
the statistical problem under consideration. Their proofs employ different strategies (most
notably, in terms of the dyadic cells expansion used) to leverage the specific structure of
Xn and Rn. It is an open question whether the uniform Gaussian strong approximation rates
obtained from Theorems 1 and 2 are optimal under the assumptions imposed.

As a way to circumvent the technical limitations underlying the proof strategies of Theo-
rem 1 and Theorem 2, Section 5 presents two other uniform Gaussian strong approximation
results when ℋ is spanned by a possibly increasing sequence of finite Haar functions on
quasi-uniform partitions, for the general empirical process (Theorem 3) and for the residual-
based empirical process (Theorem 4). These theorems shut down the projection error, and
also rely on a generalized Tusnády’s lemma established in this paper, to establish valid cou-
plings over more general partitioning schemes and under weaker regularity conditions. In this
specialized setting, we demonstrate that a uniform Gaussian strong approximation at the op-
timal univariate KMT rate based on the corresponding effective sample size is possible for all
d ≥ 1, up to a polylog(n) term, where polylog(n) = loga(n) for some a > 0, and possibly an
additional “bias” term induced exclusively by the cardinality of ℛ. As statistical applications,
we establish uniform Gaussian strong approximations for the classical histogram density es-
timator, and for Haar partitioning-based regression estimators such as those arising in the
context of certain regression tree and related nonparametric methods [4, 8, 21].

The Supplementary Material [12] contains all technical proofs, additional theoretical re-
sults of independent interest, and other omitted details.

1.1. Related literature. This paper contributes to the literature on strong approxima-
tions for empirical processes, and their applications to uniform inference for nonparametric
smoothing methods. For introductions and overviews, see [3, 14, 16, 20, 25, 27, 29, 37], and
references therein. See also [13], Section 3, for discussion and further references concerning
local empirical processes and their role in nonparametric curve estimation.

The celebrated KMT construction [24], Yurinskii’s coupling [22], and Zaitsev’s coupling
[36] are three well-known approaches that can be used to establish a uniform Gaussian strong
approximation for empirical processes. Among them, the KMT approach often offers the
tightest approximation rates when applicable, and is the focus of our paper: closely related
literature includes [18, 23, 28, 30], and [19], among others. As summarized in the Introduc-
tion, our first main result (Theorem 1) encompasses and improves on prior results in that
literature. Furthermore, Theorems 2, 3, and 4 offer new results for more specific settings of
interest in statistics, in particular addressing some outstanding problems in the literature [13],
Section 3. We provide detailed comparisons to the prior literature in the upcoming sections.

We do not discuss the other coupling approaches because they deliver slower strong ap-
proximation rates under the assumptions imposed in this paper: for example, see [11] for
results based on Yurinskii’s coupling, and [33] for results based on Zaitsev’s coupling. Fi-
nally, employing a different approach, [15] obtain a uniform Gaussian strong approximation
for the multivariate empirical process indexed by half plane indicators with a dimension-
independent approximation rate, up to polylog(n) terms.
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2. Notation. We employ standard notations from the empirical process literature, suit-
ably modified and specialized to improve exposition. See, for example, [1, 34] and [20] for
background definitions and more details.

The q-dimensional Gaussian distribution with mean 𝝁 ∈ ℝq and symmetric positive
semidefinite covariance matrix 𝚺 ∈ ℝq×q is denoted by Normal(𝝁,𝚺). The binomial dis-
tribution with parameter n ∈ ℕ and p ∈ [0,1] is denoted by Bin(n,p). |𝒜| denotes the cardi-
nality of the set 𝒜. For a vector a ∈ ℝq , ∥a∥ denotes the Euclidean norm and ∥a∥∞ denotes
the maximum norm of a. For a matrix A ∈ ℝq×q , σ1(A) ≥ σ2(A) ≥ · · · ≥ σd(A) ≥ 0 denote
the singular values of A. For 1 ≤ i1 ≤ j2 ≤ n and 1 ≤ j1 ≤ j2 ≤ n, Ai1:i2,j1:j2 denotes the sub-
matrix (Aij )i1≤i≤i2,j1≤j≤j2 of A, and Ai1,j1:j2 , Ai1:i2,j1 are likewise defined. For sequences
of real numbers, we write an = o(bn) if lim supn→∞ |an

bn
| = 0, and write an = O(bn) if there

exists some constant C and N > 0 such that n > N implies |an| ≤ C|bn|. For sequences of
random variables, we write an = oℙ(bn) if lim supn→∞ ℙ[|an

bn
| ≥ ε] = 0 for all ε > 0, and

write an = Oℙ(bn) if lim supM→∞ lim supn→∞ℙ[|an

bn
| ≥ M] = 0.

Let 𝒰,𝒱 ⊆ ℝq . We define 𝒰 +𝒱 = {u + v : u ∈ 𝒰,v ∈ 𝒱} and ∥𝒰∥∞ = sup{∥u1 − u2∥∞ :
u1,u2 ∈ 𝒰}, and ℬ(𝒰) denotes the Borel σ -algebra generated by 𝒰 and ℬ(𝒰)⊗ℬ(𝒱) denotes
the product σ -algebra. Let μ be a measure on (𝒰,ℬ(𝒰)), and ϕ : (𝒱,ℬ(𝒱)) ↦→ (𝒰,ℬ(𝒰)) be a
measurable function. μ◦ϕ denotes the measure on (𝒱,ℬ(𝒱)) such that μ◦ϕ(V ) = μ(ϕ(V ))

for any V ∈ ℬ(𝒱). For R ∈ ℬ(𝒰), let μ|R be the restriction of μ on R, that is, μ|R(U) =
μ(U ∩R) for all U ∈ ℬ(𝒰). Two measures μ and ν on the measure space (𝒰,ℬ(𝒰)) agree on
R ∈ ℬ(𝒰) if μ|R = ν|R . The support of μ is Supp(μ) = closure(∪{U ∈ ℬ(𝒰) : μ(U) ≠ 0}).
The Lebesgue measure is denoted by 𝔪. Let f be a real-valued function on the measure
space (𝒰,ℬ(𝒰),μ). Define the Lp norms ∥f ∥μ,p = (

∫︁ |f |p dμ)1/p for 1 ≤ p < ∞ and
∥f ∥∞ = supx∈𝒰 |f (x)|, and let Supp(f ) = {u ∈ 𝒰 : f (u) > 0} be the support of f . Lp(μ) is
the class of all real-valued measurable functions f on (𝒰,ℬ(𝒰)) such that ∥f ∥μ,p < ∞, for
1 ≤ p < ∞. The semimetric 𝔡μ on L2(μ) is defined by 𝔡μ(f, g) = (∥f − g∥2

μ,2 − (
∫︁

f dμ−∫︁
g dμ)2)1/2, for f,g ∈ L2(μ). Whenever it exits, ∇f (x) denotes the Jacobian matrix of f at

x. If ℱ and 𝒢 are two sets of functions from measure space (𝒰,ℬ(𝒰)) and (𝒱,ℬ(𝒱)) to ℝ, re-
spectively, then ℱ × 𝒢 denotes the class of measurable functions {(f, g) : f ∈ ℱ, g ∈ 𝒢} from
(𝒰 ×𝒱,ℬ(𝒰)⊗ℬ(𝒱)) to ℝ. For a measure μ on (𝒰 ×𝒱,ℬ(𝒰)⊗ℬ(𝒱)), the semimetric 𝔡μ on
𝒢×ℛ is defined by 𝔡μ((g1, r1), (g2, r2)) = (∥g1r1 −g2r2∥2

μ,2 −(
∫︁

g1r1 dμ−∫︁
g2r2 dμ)2)1/2.

For a semimetric space (𝒮, d), the covering number N(𝒮, d, ε) is the minimal number of balls
Bv(ε) = {u : d(u, v) < ε}, v ≥ 1, needed to cover 𝒮 .

2.1. Main definitions. Let ℱ be a class of measurable functions from a probability space
(ℝq,ℬ(ℝq),ℙ) to ℝ. We introduce several definitions that capture properties of ℱ.

DEFINITION 1. ℱ is pointwise measurable if it contains a countable subset 𝒢 such that
for any f ∈ ℱ, there exists a sequence (gm : m ≥ 1) ⊆ 𝒢 such that limm→∞ gm(u) = f (u) for
all u ∈ ℝq .

DEFINITION 2. Let Supp(ℱ) = ⋃︁
f ∈ℱ Supp(f ). A probability measure ℚℱ on (ℝq,

ℬ(ℝq)) is a surrogate measure for ℙ with respect to ℱ if:

(i) ℚℱ agrees with ℙ on Supp(ℙ) ∩ Supp(ℱ).
(ii) ℚℱ(Supp(ℱ) \ Supp(ℙ)) = 0.

Let 𝒬ℱ = Supp(ℚℱ).
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DEFINITION 3. For q = 1 and an interval ℐ ⊆ ℝ, the pointwise total variation of ℱ over
ℐ is

pTVℱ,ℐ = sup
f ∈ℱ

sup
P≥1

sup
𝒫P ∈ℐ

P−1∑︂
i=1

⃓⃓
f (ai+1) − f (ai)

⃓⃓
,

where 𝒫P = {(a1, . . . , aP ) : a1 ≤ · · · ≤ aP } denotes the collection of all partitions of ℐ .

DEFINITION 4. For a nonempty 𝒞 ⊆ ℝq , the total variation of ℱ over 𝒞 is

TVℱ,𝒞 = inf
𝒰∈𝒪(𝒞)

sup
f ∈ℱ

sup
ϕ∈𝒟q (𝒰)

∫︂
ℝq

f (u)div(ϕ)(u) du/
⃦⃦∥ϕ∥2

⃦⃦
∞,

where 𝒪(𝒞) denotes the collection of all open sets that contains 𝒞, and 𝒟q(𝒰) denotes the
space of infinitely differentiable functions from ℝq to ℝq with compact support contained in
𝒰 .

DEFINITION 5. For a nonempty 𝒞 ⊆ ℝq , the local total variation constant of ℱ over 𝒞, is
a positive number Kℱ,𝒞 such that for any cube 𝒟 ⊆ ℝq with edges of length ℓ parallel to the
coordinate axises,

TVℱ,𝒟∩𝒞 ≤ Kℱ,𝒞ℓd−1.

DEFINITION 6. For a nonempty 𝒞 ⊆ ℝq , the envelopes of ℱ over 𝒞 are

Mℱ,𝒞 = sup
u∈𝒞

Mℱ,𝒞(u), Mℱ,𝒞(u) = sup
f ∈ℱ

⃓⃓
f (u)

⃓⃓
, u ∈ 𝒞.

DEFINITION 7. For a nonempty 𝒞 ⊆ ℝq , the Lipschitz constant of ℱ over 𝒞 is

Lℱ,𝒞 = sup
f ∈ℱ

sup
u1,u2∈𝒞

|f (u1) − f (u2)|
∥u1 − u2∥∞

.

DEFINITION 8. For a nonempty 𝒞 ⊆ ℝq , the L1 bound of ℱ over 𝒞 is

Eℱ,𝒞 = sup
f ∈ℱ

∫︂
𝒞
|f |dℙ.

DEFINITION 9. For a nonempty 𝒞 ⊆ ℝq , the uniform covering number of ℱ with enve-
lope Mℱ,𝒞 over 𝒞 is

Nℱ,𝒞(δ,Mℱ,𝒞) = sup
μ

N
(︁
ℱ,∥·∥μ,2, δ∥Mℱ,𝒞∥μ,2

)︁
, δ ∈ (0,∞),

where the supremum is taken over all finite discrete measures on (𝒞,ℬ(𝒞)). We assume that
Mℱ,𝒞(u) is finite for every u ∈ 𝒞.

DEFINITION 10. For a nonempty 𝒞 ⊆ ℝq , the uniform entropy integral of ℱ with enve-
lope Mℱ,𝒞 over 𝒞 is

J𝒞(δ,ℱ,Mℱ,𝒞) =
∫︂ δ

0

√︂
1 + logNℱ,𝒞(ε,Mℱ,𝒞) dε,

where it is assumed that Mℱ,𝒞(u) is finite for every u ∈ 𝒞.
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DEFINITION 11. For a nonempty 𝒞 ⊆ ℝq , ℱ is a VC-type class with envelope Mℱ,𝒞 over
𝒞 if (i) Mℱ,𝒞 is measurable and Mℱ,𝒞(u) is finite for every u ∈ 𝒞, and (ii) there exist cℱ,𝒞 > 0
and dℱ,𝒞 > 0 such that

Nℱ,𝒞(ε,Mℱ,𝒞) ≤ cℱ,𝒞ε−dℱ,𝒞 , ε ∈ (0,1).

DEFINITION 12. For a nonempty 𝒞 ⊆ ℝq , ℱ is a polynomial-entropy class with envelope
Mℱ,𝒞 over 𝒞 if (i) Mℱ,𝒞 is measurable and Mℱ,𝒞(u) is finite for every u ∈ 𝒞, and (ii) there
exist aℱ,𝒞 > 0 and bℱ,𝒞 > 0 such that

logNℱ,𝒞(ε,Mℱ,𝒞) ≤ aℱ,𝒞ε−bℱ,𝒞 , ε ∈ (0,1).

If a surrogate measure ℚℱ for ℙ with respect to ℱ has been assumed, and it is clear from
the context, we drop the dependence on 𝒞 = 𝒬ℱ for all quantities in Definitions 4–12. That
is, to save notation, we set TVℱ = TVℱ,𝒬ℱ

, Kℱ = Kℱ,𝒬ℱ
, Mℱ = Mℱ,𝒬ℱ

, Mℱ(u) = Mℱ,𝒬ℱ
(u),

Lℱ = Lℱ,𝒬ℱ
, and so on, whenever there is no confusion.

3. General empirical process. Let

mn,d =
⎧⎨⎩n−1/2

√︂
logn if d = 1,

n−1/(2d) if d ≥ 2,
and ln,d =

⎧⎪⎪⎨⎪⎪⎩
1 if d = 1,

n−1/2
√︂

logn if d = 2,

n−1/d if d ≥ 3,

and recall Section 2.1 and the notation conventions introduced there.

THEOREM 1. Suppose (xi : 1 ≤ i ≤ n) are i.i.d. random vectors taking values in
(ℝd,ℬ(ℝd)) with common law ℙX supported on 𝒳 ⊆ ℝd , and the following conditions hold.

(i) ℋ is a real-valued pointwise measurable class of functions on (ℝd,ℬ(ℝd),ℙX).
(ii) There exists a surrogate measure ℚℋ for ℙX with respect to ℋ such that ℚℋ =

𝔪◦ϕℋ, where the normalizing transformation ϕℋ : 𝒬ℋ ↦→ [0,1]d is a diffeomorphism.
(iii) Mℋ < ∞ and J (1,ℋ,Mℋ) < ∞.

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaus-
sian processes (ZX

n (h) : h ∈ ℋ) with almost sure continuous trajectories on (ℋ,𝔡ℙX
) such

that:

• 𝔼[Xn(h1)Xn(h2)] = 𝔼[ZX
n (h1)Z

X
n (h2)] for all h1, h2 ∈ℋ, and

• ℙ[∥Xn − ZX
n ∥ℋ > C1Sn(t)] ≤ C2e

−t for all t > 0,

where C1 and C2 are universal constants, and

Sn(t) = min
δ∈(0,1)

{︁
An(t, δ) + Fn(t, δ)

}︁
,

where

An(t, δ) = min
{︁
mn,d

√
Mℋ, ln,d

√
c2Lℋ

}︁√
c1TVℋ

√︂
t + logNℋ(δ,Mℋ)

+
√︄
Mℋ
n

min
{︂√︂

logn
√
Mℋ,

√
c3Kℋ + Mℋ

}︂(︁
t + logNℋ(δ,Mℋ)

)︁
,

c1 = d sup
x∈𝒬ℋ

d−1∏︂
j=1

σj

(︁∇ϕℋ(x)
)︁
, c2 = sup

x∈𝒬ℋ

1

σd(∇ϕℋ(x))
, c3 = 2d−1dd/2−1c1c

d−1
2 ,

and

Fn(t, δ) = J (δ,ℋ,Mℋ)Mℋ + MℋJ 2(δ,ℋ,Mℋ)

δ2
√

n
+ δMℋ

√
t + Mℋ√

n
t.



STRONG APPROXIMATIONS FOR EMPIRICAL PROCESSES 1211

This uniform Gaussian strong approximation theorem is given in full generality to accom-
modate different applications. Section 3.1 discusses the role of the surrogate measure and
normalizing transformation, and Section 3.2 discusses leading special cases and compares
our results to prior literature. The proof of Theorem 1 is in [12], Section SA-II, but we briefly
outline the general proof strategy here to highlight our improvements on prior literature and
some open questions. The proof begins with the standard discretization (or meshing) decom-
position:⃦⃦

Xn − ZX
n

⃦⃦
ℋ ≤ ∥Xn − Xn ◦ πℋδ

∥ℋ + ⃦⃦
Xn − ZX

n

⃦⃦
ℋδ

+ ⃦⃦
ZX

n ◦ πℋδ
− ZX

n

⃦⃦
ℋ,

where ∥Xn − ZX
n ∥ℋδ

captures the coupling between the empirical process and the Gaussian
process on a δ-net of ℋ, which is denoted by ℋδ , while the terms ∥Xn − Xn ◦ πℋδ

∥ℋ and
∥ZX

n ◦ πℋδ
− ZX

n ∥ℋ capture the fluctuations (or oscillations) relative to the meshing for each
of the stochastic processes. The latter two errors are handled using standard empirical pro-
cess results, which give the contribution Fn(t, δ) emerging from Talagrand’s inequality [20],
Theorem 3.3.9, combined with a standard maximal inequality [13], Theorem 5.2.

Following [30], the coupling term ∥Xn − ZX
n ∥ℋδ

is further decomposed using a mean
square projection onto a Haar function space:⃦⃦

Xn − ZX
n

⃦⃦
ℋδ

≤ ∥Xn − Π0Xn∥ℋδ
+ ⃦⃦

Π0Xn − Π0Z
X
n

⃦⃦
ℋδ

+ ⃦⃦
Π0Z

X
n − ZX

n

⃦⃦
ℋδ

,(10)

where Π0Xn(h) = Xn ◦ Π0h with Π0 denoting the L2-projection onto piecewise constant
functions on a carefully chosen partition of 𝒳 . We introduce a class of recursive quasi-dyadic
cells expansion of 𝒳 , which we employ to generalize prior results in the literature, including
properties of the L2-projection onto a Haar basis based on quasi-dyadic cells.

The term ∥Π0Xn − Π0Z
X
n ∥ℋδ

in (10) represents the strong approximation error for the
projected process over a recursive dyadic collection of cells partitioning 𝒳 . Handling this
error boils down to the coupling of Bin(n, 1

2) with Normal(n
2 , n

4 ), due to the fact that the
constant approximation within each recursive partitioning cell generates counts based on
i.i.d. data. Building on the celebrated Tusnády’s lemma, [30], Theorem 2.1, established a
remarkable coupling result for bounded functions L2-projected on a dyadic cells expansion of
𝒳 . We build on his powerful ideas, and establish an analogous result for the case of Lipschitz
functions L2-projected on dyadic cells expansion of 𝒳 , thereby obtaining a tighter coupling
error. A limitation of these results is that they only apply to a dyadic cells expansion due to
the specifics of Tusnády’s lemma.

The terms ∥Xn −Π0Xn∥ℋδ
and ∥Π0Z

X
n −ZX

n ∥ℋδ
in (10) represent the errors of the mean

square projection onto a Haar basis based on quasi-dyadic cells expansion of 𝒳 . We handle
this error using Bernstein inequality, while also taking into account explicitly the potential
Lipschitz structure of the functions, and the more generic cell structure.

Balancing the coupling error and the two projection errors in (10) gives term An(t, δ) in
Theorem 1. Section SA-II of [12] provides all technical details, and additional results that
may be of independent interest.

3.1. Surrogate measure and normalizing transformation. Theorem 1 assumes the ex-
istence of a surrogate measure ℚℋ, and a normalizing transformation ϕℋ, which together
restrict ℙX to be absolutely continuous with respect to 𝔪 on 𝒳 ∩ Supp(ℋ), while incorpo-
rating features of the support of ℋ. We provide examples of ℚℋ and ϕℋ, discuss primitive
sufficient conditions, and bound the constants c1, c2, and c3 explicitly.

As a first simple example, suppose that xi ∼ Uniform(𝒳 ) with 𝒳 =×d
l=1[al ,bl], where

−∞ < al < bl < ∞, l = 1,2, . . . , d . Setting ℚℋ = ℙX and ϕℋ(x1, . . . , xd) = ((b1 −
a1)

−1(x1 − a1), . . . , (bd − ad)−1(xd − ad)) verifies assumption (ii) in Theorem 1. In
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this case, c1 = d max1≤l≤d |bl − al|∏︁d
l=1 |bl − al|−1, c2 = max1≤l≤d |bl − al| and c3 =

2d−1dd/2 max1≤l≤d |bl − al|d ∏︁d
l=1 |bl − al|−1.

When ℙX is not the uniform distribution, or 𝒳 is not isomorphic to the d-dimensional unit
cube, a careful choice of ℚℋ and ϕℋ is needed. In many interesting cases, the Rosenblatt
transformation can be used to exhibit a valid normalizing transformation, together with an
appropriate choice of ℚℋ taking into account 𝒳 and Supp(ℋ). For a random vector V =
(V1, . . . , Vd) ∈ ℝd with distribution ℙV , the Rosenblatt transformation is

TℙV
(v1, . . . , vd) =

⎡⎢⎢⎢⎣
ℙV (V1 ≤ v1)

ℙV (V2 ≤ v2|V1 = v1)
...

ℙV (Vd ≤ vd |V1 = v1, . . . , Vd−1 = vd−1)

⎤⎥⎥⎥⎦ .

To discuss the role of the Rosenblatt transformation in constructing a valid normalizing
transformation, we consider the following two cases.

Case 1: Rectangular 𝒬ℋ. Suppose that ℚℋ admits a Lebesgue density fQ supported on
𝒬ℋ =×d

l=1[al ,bl], −∞ ≤ al < bl ≤ ∞. Then, the Rosenblatt transformation ϕℋ = Tℚℋ

is a normalizing transformation, and we obtain

c1 = d sup
u∈𝒬ℋ

fQ(u)

min{fQ,1(u1), fQ,2|1(u2|u1), . . . , fQ,d|−d(ud |u1, . . . , ud−1)} ,

c2 = sup
u∈𝒬ℋ

1

min{fQ,1(u1), fQ,2|1(u2|u1), . . . , fQ,d|−d(ud |u1, . . . , ud−1)} ,

and c3 = 2d−1dd/2−1c1c
d−1
2 , where fQ,j |−j (·|u1, . . . , uj−1) denotes the conditional den-

sity of Qj |Q1 = u1, . . . ,Qj−1 = uj−1 for Q = (Q1, . . . ,Qd) ∼ℚℋ.
This case covers several examples of interest, which give primitive conditions for as-

sumption (ii) in Theorem 1:

(a) Suppose 𝒬ℋ =×d
l=1[al ,bl] is bounded. Then, for fQ bounded and bounded away

from zero on 𝒬ℋ,

c1 ≤ d
f

2
Q

f
Q

𝒬ℋ and c2 ≤ f Q

f
Q

𝒬ℋ,

where f
Q

= infx∈𝒬ℋ
fX(x), f Q = supx∈𝒬ℋ

fQ(x), and 𝒬ℋ = max1≤l≤d |bl −al|. If 𝒳 =
×d

l=1[al ,bl] is bounded and ℙX admits a bounded Lebesgue density fX on 𝒳 , then we
can set ℚℋ = ℙX and ϕℋ = TℙX

. This case corresponds to [30], Theorem 1.1, and the
bounds for c1 and c3 coincide with those in [30], Section 3, Transformation of the r.v.’s.
Alternatively, if 𝒳 is unbounded but Supp(ℋ) is bounded, we may still be able to find ℚℋ

supported on a bounded rectangle. We illustrate this case with Example 1 in Section 3.2.
(b) Suppose 𝒬ℋ =×d

l=1[al ,bl] is unbounded. This is often the case when 𝒳 and
Supp(ℋ) are unbounded (but note that setting 𝒳 ∩ Supp(ℋ) could be bounded in some
cases). To fix ideas, let xi ∼ Normal(𝝁,𝚺). Then, we can set ℚℋ = ℙX and ϕℋ = TℙX

,
and obtain

c1 ≤ d sup
x∈𝒬ℋ

max
{︁
fX,1(x1), fX,2|1(x2|x1), . . . , fX,d|−d(xd |x−d)

}︁d−1

≤ d min
1≤k≤d

{︁
𝚺k,k − 𝚺k,1:k−1𝚺

−1
1:k−1,1:k−1𝚺1:k−1,k

}︁−(d−1)/2
(11)
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bounded, but c2 (and hence c3) unbounded. This result shows that even when the support
of ℙX is unbounded, a valid uniform Gaussian strong approximation can be established in
certain cases (albeit the Lipschitz property is not used).

Case 2: Nonrectangular 𝒬ℋ. Due to the irregularity of 𝒳 and Supp(ℋ), in some settings
only a surrogate measure ℚℋ with nonrectangular 𝒬ℋ may exist. Then, we can com-
pose the Rosenblatt transformation with another mapping capturing the shape of 𝒬ℋ

to exhibit a valid normalizing transformation. Suppose that ℚℋ admits a Lebesgue den-
sity fQ supported on 𝒬ℋ, and there exists a diffeomorphism χ : 𝒬ℋ ↦→ [0,1]d . Setting
ϕℋ = Tℚℋ◦χ−1 ◦ χ gives a valid normalizing transformation, with

c1 ≤ d
f

2
Q

f
Q

Sχ and c2 ≤ f Q

f
Q

Sχ ,

where Sχ = supx∈[0,1]d |det(∇χ−1(x))|
infx∈[0,1]d |det(∇χ−1(x))| ∥∥∇χ−1∥2∥∞. See also Example 1 in Section 3.2.

To recap, Theorem 1 requires the existence of a surrogate measure and a normalizing
transformation, which restrict the probability law of the data and take advantage of specific
features of the function class. In particular, assumption (ii) in Theorem 1 does not require 𝒳
to be compact if either (11) is bounded (as it occurs when ℙX is the Gaussian distribution) or
Supp(ℋ) is bounded (as we illustrate in Example 1 in Section 3.2). See Section SA-II.2 of
[12] for details.

3.2. Special cases and related literature. We introduce our first statistical example.

EXAMPLE 1 (Kernel Density Estimation). Suppose that ℙX admits a continuous
Lebesgue density fX on its support 𝒳 . The classical kernel density estimator is

ˆ︁fX(w) = 1

n

n∑︂
i=1

1

bd
K

(︃
xi − w

b

)︃
,

where K : 𝒦 → ℝ is a continuous function with 𝒦 ⊆ ℝd compact, and
∫︁
𝒦 K(w) dw = 1.

In statistical applications, the bandwidth b → 0 as n → ∞ to enable nonparametric estima-
tion [35]. Consider establishing a strong approximation for the localized empirical process
(ξn(w) : w ∈𝒲), 𝒲 ⊆𝒳 , where

ξn(w) =
√︁

nbd
(︂ ˆ︁fX(w) −𝔼

[︁ ˆ︁fX(w)
]︁)︂ = Xn(hw), hw ∈ ℋ,

with ℋ = {︁
hw(·) = b−d/2K((· − w)/b) : w ∈ 𝒲}︁

. It follows that Mℋ,ℝd = O(b−d/2).

Variants of Example 1 have been discussed extensively in prior literature on strong approx-
imations because the process ξn is non-Donsker whenever b → 0, and hence standard weak
convergence results for empirical processes can not be used. For example, [18] and [19] es-
tablished strong approximations for the univariate case (d = 1) under i.i.d. sampling with 𝒳
unbounded, [10] established strong approximations for the univariate case (d = 1) under i.i.d.
sampling with 𝒳 compact, [30] established strong approximations for the multivariate case
(d > 1) under i.i.d. sampling with 𝒳 compact, [32] established strong approximations for the
multivariate case (d > 1) under i.i.d. sampling with 𝒳 unbounded, and [9] established strong
approximations for the univariate case (d = 1) under non-i.i.d. dyadic data with 𝒳 compact.
[13], Remark 3.1, provides further discussion and references. See also [7] for an application
of [30] to uniform inference for conditional density estimation.

We can use Example 1 to further illustrate the role of ℚℋ and ϕℋ.
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EXAMPLE 1 (Continued). Recall that 𝒳 is the support of ℙX , 𝒲 ⊆ 𝒳 is the index set for
the class ℋ, and 𝒦 is the compact support of K . It follows that Supp(ℋ) = 𝒲 + b · 𝒦. We
illustrate two sets of primitive conditions implying assumption (ii) in Theorem 1.

• Suppose that 𝒳 =×d
l=1[al ,bl], −∞ ≤ al < bl ≤ ∞, and 𝒲 is arbitrary. Then, we can set

ℚℋ = ℙX and ϕℋ = TℙX
, and the discussion in parts (a) and (b) of Case 1 in Section 3.1 ap-

plies, which implies assumption (ii) in Theorem 1 under the assumptions imposed therein.
Furthermore, when 𝒳 is bounded, c1 = O(1) and c2 = O(1), and hence c3 = O(1), be-
cause fX is continuous and positive on 𝒳 . This is part (a) in Case 1 of Section 3.1, and
also the example in [30], Section 4. No information on Supp(ℋ) is used.

• Suppose that 𝒳 is arbitrary, and 𝒲 is bounded. Then, it may be possible to find ℚℋ

supported on a bounded set, even if 𝒳 is unbounded. For example, suppose that 𝒳 = ℝd+,
𝒲 =×d

l=1[al ,bl], 0 ≤ al < bl < ∞, and 𝒦 = [−1,1]d . Then, for instance, we can take
ℚℋ with Lebesgue density

fQ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
fX(x) if x ∈ d×

l=1
[al ,bl],(︃

1 − ℙX

(︃
d×

l=1
[al ,bl]

)︃)︃
/𝔪(ϒ) if x ∈ ϒ,

0 otherwise,

where al = max{al − b,0}, bl = bl + b, ϒ =×d
l=1[al ,bl + 1] \×d

l=1[al ,bl], and ϕℋ =
Tℚℋ◦χ−1 ◦ χ with χ(x1, . . . , xd) = ((b1 − a1)

−1(x1 − a1), . . . , (bd − ad)−1(xd − ad)). It
follows that assumption (ii) in Theorem 1 holds. A more general example is discussed in
[12], Section SA-II.6.

Finally, the surrogate measure and normalizing transformation could be used to incorporate
truncation arguments. We do not dive into this idea for brevity.

We now specialize Theorem 1 to several cases of practical interest. We employ the defini-
tions and notation conventions given in Section 2.1. To streamline the presentation, we also
assume that c1 < ∞ and c2 < ∞ (hence c3 < ∞) in the remaining of Section 3. See [12],
Section SA-II, for details.

3.2.1. VC-type bounded functions. Our first corollary considers a VC-type class ℋ of
uniformly bounded functions (Mℋ < ∞), but without assuming they are Lipschitz (Lℋ = ∞).

COROLLARY 1 (VC-type Bounded Functions). Suppose the conditions of Theorem 1
hold. In addition, assume that ℋ is a VC-type class with respect to envelope function Mℋ
over 𝒬ℋ with constants cℋ ≥ e and dℋ ≥ 1. Then, (3) holds with

ϱn = mn,d

√︂
logn

√
c1MℋTVℋ + logn√

n
min

{︂√︂
logn

√
Mℋ,

√
c3Kℋ + Mℋ

}︂√
Mℋ.

This corollary recovers the main result in [30], Theorem 1.1, when d ≥ 2, where mn,d =
n−1/(2d). It also covers d = 1, where mn,1 = n−1/2√logn, thereby allowing for a precise
comparison with prior KMT strong approximation results in the univariate case [9, 18, 19].
Thus, Corollary 1 contributes to the literature by covering all d ≥ 1 cases simultaneously,
allowing for possibly weaker regularity conditions on ℙX through the surrogate measure and
normalizing transformation, and making explicit the dependence on d , 𝒳 , and all other fea-
tures of the underlying data generating process. This additional contribution can be useful for
nonasymptotic probability concentration arguments, or for truncation arguments (see [32] for
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an example). Nonetheless, for d ≥ 2, the main intellectual content of Corollary 1 is due to
[30]; we present it here for completeness and as a prelude for our upcoming results.

For d = 1, Corollary 1 delivers the optimal univariate KMT approximation rate when
Kℋ = O(1), which employs a weaker notion of total variation relative to prior literature, but
at the expense of requiring additional conditions, as the following remark explains.

REMARK 1 (Univariate strong approximation). In Section 2 of [18] and the proof of [19],
the authors considered univariate (d = 1) i.i.d. continuously distributed random variables, and
established the strong approximation:

ℙ

(︃⃦⃦
Xn − ZX

n

⃦⃦
ℋ > pTVℋ,ℝ

t + C1 logn√
n

)︃
≤ C2 exp(−C3t), t > 0,

where C1,C2,C3 are universal constants. [9], Lemma SA20, slightly generalized the result
(e.g., ℙX is not required to be absolutely continuous with respect to the Lebesgue measure),
and provided a self-contained proof.

For any interval ℐ in ℝ, TVℋ,ℐ ≤ pTVℋ,ℐ provided that Mℋ,ℐ < ∞ [1], Theorem 3.27.
Therefore, Theorem 1 employs a weaker notation of total variation, but imposes complexity
requirements on ℋ and the existence of a normalizing transformation. In contrast, [18, 19]
and [9] do not imposed those extra conditions, but their results only apply when d = 1.

We illustrate the usefulness of Corollary 1 with Example 1.

EXAMPLE 1 (Continued). Let the conditions of Theorem 1 hold, and nbd/ logn → ∞.
Prior literature further assumed K is Lipschitz to verify the conditions of Corollary 1
with TVℋ = O(bd/2−1) and Kℋ = O(b−d/2). Then, for Xn = ξn, (3) holds with ϱn =
(nbd)−1/(2d)

√
logn + (nbd)−1/2 logn.

The resulting uniform Gaussian approximation convergence rate in Example 1 matches
prior literature for d = 1 [9, 18, 19] and d ≥ 2 [30]. This result concerns the uniform Gaussian
strong approximation of the entire stochastic process, which can then be specialized to deduce
a strong approximation for the scalar suprema of the empirical process ∥ξn∥ℋ. As noted
by [13], Remark 3.1(ii), the (almost sure) strong approximation rate in Example 1 is better
than their strong approximation rate (in probability) for ∥ξn∥ℋ when d ∈ {1,2,3}, but their
approach specifically tailored to the scalar suprema delivers better strong approximation rates
when d ≥ 4.

Following prior literature, Example 1 imposed the additional condition that K is Lips-
chitz to verify that ℋ = {︁

b−d/2K((· − w)/b) : w ∈ 𝒲}︁
forms a VC-type class, and the other

conditions in Corollary 1. The Lipschitz assumption holds for most kernel functions used in
practice. One notable exception is the uniform kernel, which is nonetheless covered by Corol-
lary 1, and prior results in the literature, with a slightly suboptimal strong approximation rate
(an extra

√
logn term appears when d ≥ 2).

3.2.2. VC-type Lipschitz functions. It is known that the uniform Gaussian strong approx-
imation rate in Corollary 1 is optimal under the assumptions imposed [2]. However, the class
of functions ℋ often has additional structure in statistical applications that can be exploited to
improve on Corollary 1. In Example 1, for instance, prior literature further assumed K is Lip-
schitz to verify the sufficient conditions. Therefore, our next corollary considers a VC-type
class ℋ now allowing for the possibility of Lipschitz functions (Lℋ < ∞).
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COROLLARY 2 (VC-type Lipschitz functions). Suppose the conditions of Theorem 1
hold. In addition, assume that ℋ is a VC-type class with envelope function Mℋ over 𝒬ℋ

with constants cℋ ≥ e and dℋ ≥ 1. Then, (3) holds with

ϱn = min
{︁
mn,d

√
Mℋ, ln,d

√
c2Lℋ

}︁√︂
logn

√
c1TVℋ

+ logn√
n

min
{︂√︂

logn
√
Mℋ,

√
c3Kℋ + Mℋ

}︂√
Mℋ.

Putting aside Mℋ and TVℋ, this corollary shows that if Lℋ < ∞, then the rate of strong ap-
proximation can be improved. In particular, for d = 2, mn,2 = n−1/4 but ln,2 = n−1/2√logn,
implying that ϱn = n−1/2 logn whenever Kℋ = O(b−d/2). Therefore, Corollary 2 establishes
a uniform Gaussian strong approximation for general empirical processes based on bivariate
data that can achieve the optimal univariate KMT approximation rate. (An additional

√
logn

penalty would appear if Kℋ = ∞.)
For d ≥ 3, Corollary 2 also provides improvements relative to prior literature, but falls

short of achieving the optimal univariate KMT approximation rate. Specifically, mn,d =
n−1/(2d) but ln,d = n−1/d for d ≥ 3, implying that ϱn = n−1/d

√
logn. It remains an open

question whether further improvements are possible at this level of generality: the main road-
block underlying the proof strategy is related to the coupling approach based on the Tus-
nády’s inequality for binomial counts, which in turn are generated by the aforementioned
mean square approximation of the functions h ∈ ℋ by local constant functions on carefully
chosen partitions of 𝒬ℋ. Our key observation underlying Corollary 2, and hence the limita-
tion, is that for Lipschitz functions (Lℋ < ∞) both the projection error arising from the mean
square approximation and the KMT coupling error by [30], Theorem 2.1, can be improved.
However, further improvements for smoother functions appear to necessitate an approxima-
tion approach that would not generate dyadic binomial counts, thereby rendering current
coupling approaches inapplicable.

We revisit the kernel density estimation example to illustrate the power of Corollary 2.

EXAMPLE 1 (Continued). Under the conditions imposed, Lℋ = O(b−d/2−1), and Corol-
lary 2 implies that, for Xn = ξn, (3) holds with ϱn = (nbd)−1/d

√
logn + (nbd)−1/2 logn.

Returning to the discussion of [13], Remark 3.1(ii), Example 1 shows that our almost sure
strong approximation rate for the entire empirical process is now better than their strong
approximation (in probability) rate for the scalar suprema ∥ξn∥ℋ = supw∈𝒲 |ξn(w)| when
d ≤ 6. On the other hand, their approach delivers a better strong approximation rate in prob-
ability for ∥ξn∥ℋ when d ≥ 7. Our improvement is obtained without imposing additional
assumptions because [30], Section 4, already assumed K is Lipschitizian for the verification
of the conditions imposed by his strong approximation result (cf. Corollary 1).

3.2.3. Polynomial-entropy functions. [23] also considered uniform Gaussian strong ap-
proximations for the general empirical process under other notions of entropy for ℋ, thereby
allowing for more complex classes of functions when compared to [30]. Furthermore, [23]
employed a Haar approximation condition, which plays a similar role as the total variation
and the Lipschitz conditions exploited in our paper. To enable a precise comparison to [23],
the next corollary considers a class ℋ satisfying a polynomial-entropy condition.

COROLLARY 3 (Polynomial-entropy functions). Suppose the conditions of Theorem 1
hold, and that ℋ is a polynomial-entropy class with envelope function Mℋ over 𝒬ℋ with
constants aℋ > 0 and 0 < bℋ < 2. Then, (3) holds as follows:
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(i) If Lℋ ≤ ∞, then

ϱn = mn,d

√
c1MℋTVℋ

(︂√︂
logn + (︁

c1m2
n,dM

−1
ℋ TVℋ

)︁−bℋ/4
)︂

+
√︄
Mℋ
n

min
{︂√︂

logn
√
Mℋ,

√
c3Kℋ + Mℋ

}︂(︂
logn + (︁

c1m2
n,dM

−1
ℋ TVℋ

)︁−bℋ/2
)︂
,

(ii) If Lℋ < ∞, then

ϱn = ln,d

√
c1c2LℋTVℋ

(︂√︂
logn + (︁

c1c2l2n,dM
−2
ℋ LℋTVℋ

)︁−bℋ/4
)︂

+
√︄
Mℋ
n

min
{︂√︂

logn
√
Mℋ,

√
c3Kℋ + Mℋ

}︂(︂
logn + (︁

c1c2l2n,dM
−2
ℋ LℋTVℋ

)︁−bℋ/2
)︂
.

This corollary reports a simplified version of our result, which corresponds to the best
possible bound for the discussion in this section. See [12], Section SA-II, for the general case.
It is possible to apply Corollary 3 to Example 1, although the result is suboptimal relative to
the previous results leveraging a VC-type condition.

EXAMPLE 1 (Continued). Under the conditions imposed, for any 0 < bℋ < 2, we
can take aℋ = log(d + 1) + db−1

ℋ so that ℋ is a polynomial-entropy class with con-
stants (aℋ,bℋ). Then, Corollary 3(ii) implies that, for Xn = ξn, (3) holds with ϱn =
a2
ℋ(nbd)−(1−bℋ/2)/db−dbℋ + a2

ℋ(nbd)−1/2+bℋ/db−dbℋ/2.

Our running example shows that a uniform Gaussian strong approximation based on
polynomial-entropy conditions can lead to suboptimal KMT approximation rates. However,
for other (larger) function classes, those results may be useful. The following remark dis-
cusses an example studied in [23], and illustrates our contributions in that context.

REMARK 2 (Polynomial-entropy condition). Suppose ℙX is Uniform(𝒳 ) with 𝒳 =
[0,1]d , and ℋ a subclass of Cq(𝒳 ) with Cq -norm uniformly bounded by 1 and 2 ≤ d < q .
[23], page 111, discusses this example after his Theorem 11.3, and reports the uniform Gaus-

sian strong approximation rate n
− q−d

2qd polylog(n). See [23], or [12], Section SA-I, for the
additional notation and definitions used in this example.

Corollary 3 is applicable to this case, upon setting (ℚℋ, ϕℋ) = (ℙX, Id) with Id denoting
the identity map from [0,1]d to [0,1]d . It follows that Mℋ = 1, TVℋ = 1, Lℋ = 1. [34],
Theorem 2.7.1, shows that ℋ is a polynomial-entropy class with constants aℋ = Cq,d and
bℋ = d/q , where Cq,d is a constant depending on q and d only. Then, Corollary 3(ii) implies
that, for Xn = ξn, (3) holds with

ϱn =
⎧⎨⎩n

− 1
2 + 1

q polylog(n) if d = 2,

n
− 2q−d

2dq polylog(n) if d > 2,

which gives a faster convergence rate than the one obtained by [23].
The improvement is explained by two differences between [23] and our approach. First, we

explicitly incorporate the Lipschitz condition, and hence we can take β = 2
d

instead of β = 1
d

in equation (3.1) of [23]. Second, using the uniform entropy condition approach, we get
logN(ℋ,∥·∥ℙX,2, ε) = O(ε−d/q ), while [23] started with the bracketing number condition
logN[](ℋ,∥·∥ℙX,1, ε) = O(ε−d/q) and, with the help of his Lemma 8.4, applied Theorem
3.1 with α = d

d+q
in his equation (3.2). The proof of his Theorem 3.1 leverages the fact that

his equation (3.2) implies that logN(ℋ,∥·∥ℙX,2, ε) = O(ε−2d/q), and his approximation rate
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is looser by a power of two when compared to the uniform entropy condition underlying our
Corollary 3. Setting Lℋ = ∞, bℋ = 2d/q , and keeping the other constants, Corollary 3(i)

would give ϱn = n
− q−d

2qd polylog(n), which is the same rate as in [23]. Finally, Theorem 3.2 in
[23] allows for logN(ℋ,∥·∥ℙX,2, ε) = O(ε−2ρ) where ρ is not implied by his equation (3.2),

and his result would give the strong approximation rate n
− 2q−d

4qd polylog(n).

4. Residual-based empirical process. Consider the simple local empirical process dis-
cussed in [13], Section 3.1:

Sn(w) = 1

nbd

n∑︂
i=1

K

(︃
xi − w

b

)︃
yi, w ∈ 𝒲,(12)

where xi ∼ ℙX , yi ∼ ℙY , and b → 0 as n → ∞. Using our notation,
(︁√

nbd(Sn(w) −
𝔼[Sn(w)|x1, . . . ,xn]) : w ∈ 𝒲)︁ = (Rn(g, r) : g ∈ 𝒢, r ∈ ℛ) with 𝒢 = {︁

b−d/2K( ·−w
b

) : w ∈
𝒲}︁

and ℛ = {Id}, where Id denotes the identity map from ℝ to ℝ. This setting corresponds
to kernel regression estimation with K interpreted as the equivalent kernel; see Section 4.1
for details. As noted in [13], Remark 3.1(iii), a direct application of [30], or of our Theorem 1,
views zi = (xi , yi) ∼ ℙZ as the underlying (d + 1)-dimensional random vectors entering the
general empirical process Xn defined in (1). Specifically, under some regularity conditions on
K and nontrivial restrictions on the joint distribution ℙZ , Rio’s [30] strong approximation re-
sult verifies (3) with rate (6), which is also verified via Corollary 1. Furthermore, imposing a
Lipschitz property on ℋ = 𝒢×ℛ, Corollary 2 would give the improved strong approximation
result (8), under regularity conditions.

The strong approximation results for Sn illustrate two fundamental limitations because
all the elements in zi = (xi , yi) are treated symmetrically. First, the effective sample size
emerging in the strong approximation rate is nbd+1, which is suboptimal because only the
d-dimensional covariate xi are being smoothed out. Since the pointwise variance of the pro-
cess is of order n−1b−d , the correct effective sample size should be nbd , up to polylog(n)

terms. Therefore, applying [30], or our improved Theorem 1, leads to a suboptimal uniform
Gaussian strong approximation for Sn. Second, applying [30], or our improved Theorem 1,
requires ℙZ to be continuously distributed and supported on [0,1]d+1, possibly after applying
a normalizing transformation. This requirement imposes nontrivial restrictions on ℙZ and, in
particular, on ℙY , limiting the applicability of the strong approximation results. See [13],
Remark 3.1(iii), for more discussion.

Motivated by the aforementioned limitations, the following theorem explicitly studies the
residual-based empirical process defined in (7), leveraging its intrinsic multiplicative separa-
ble structure. We present our result under a VC-type condition on 𝒢 × ℛ to streamline the
discussion, but a result at the same level of generality as Theorem 1 is given in [12], Section
SA-IV. Recall Section 2.1 and the notation conventions introduced therein.

THEOREM 2. Suppose (zi = (xi , yi) : 1 ≤ i ≤ n) are i.i.d. random vectors taking values
in (ℝd+1,ℬ(ℝd+1)) with common law ℙZ , where xi has distribution ℙX supported on 𝒳 ⊆
ℝd , yi has distribution ℙY supported on 𝒴 ⊆ ℝ, and the following conditions hold.

(i) 𝒢 is a real-valued pointwise measurable class of functions on (ℝd,ℬ(ℝd),ℙX).
(ii) There exists a surrogate measure ℚ𝒢 for ℙX with respect to 𝒢 such that ℚ𝒢 = 𝔪◦ϕ𝒢,

where the normalizing transformation ϕ𝒢 : 𝒬𝒢 ↦→ [0,1]d is a diffeomorphism.
(iii) 𝒢 is a VC-type class with function M𝒢 over 𝒬𝒢 with c𝒢 ≥ e and d𝒢 ≥ 1.
(iv) ℛ is a real-valued pointwise measurable class of functions on (ℝ,ℬ(ℝ),ℙY ).



STRONG APPROXIMATIONS FOR EMPIRICAL PROCESSES 1219

(v) ℛ is a VC-type class with envelope Mℛ,𝒴 over 𝒴 with cℛ,𝒴 ≥ e and dℛ,𝒴 ≥ 1, where
Mℛ,𝒴(y) + pTVℛ,(−|y|,|y|) ≤ v(1 + |y|α) for all y ∈ 𝒴 , for some v> 0, and for some α ≥ 0.
Furthermore, if α > 0, then supx∈𝒳 𝔼[exp(|yi |)|xi = x] ≤ 2.

(vi) There exists a constant k such that | log2 E𝒢|+| log2 TV|+| log2 M𝒢| ≤ k log2 n, where
TV= max{TV𝒢,TV𝒢×𝒱ℛ,𝒬𝒢

} with 𝒱ℛ = {θ(·, r) : r ∈ ℛ}, and θ(x, r) = 𝔼[r(yi)|xi = x].
Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaus-
sian processes (ZR

n (g, r) : (g, r) ∈ 𝒢 × ℛ) with almost sure continuous trajectories on
(𝒢×ℛ,𝔡ℙZ

) such that:

• 𝔼[Rn(g1, r1)Rn(g2, r2)] = 𝔼[ZR
n (g1, r1)Z

R
n (g2, r2)] for all (g1, r1), (g2, r2) ∈ 𝒢×ℛ, and

• ℙ[∥Rn − ZR
n ∥𝒢×ℛ > C1Cv,αTn(t)] ≤ C2e

−t for all t > 0,

where C1 and C2 are universal constants, Cv,α = vmax{1 + (2α)
α
2 ,1 + (4α)α}, and

Tn(t) = An

(︁
t + k log2 n + d log(cn)

)︁α+ 3
2
√

d + M𝒢√
n

(︁
t + k log2 n + d log(cn)

)︁α+1
,

An = min
{︃(︃cd

1M
d+1
𝒢 TVdE𝒢

n

)︃ 1
2d+2

,

(︃
c

d
2
1 c

d
2
2 M𝒢E𝒢TV

d
2L

d
2

n

)︃ 1
d+2

}︃
,

c1 = d sup
x∈𝒬𝒢

d−1∏︂
j=1

σj

(︁∇ϕ𝒢(x)
)︁
, c2 = sup

x∈𝒬𝒢

1

σd(∇ϕ𝒢(x))
,

with c= c𝒢cℛ,𝒴 , d= d𝒢 + dℛ,𝒴 , and L= max{L𝒢, L𝒢×𝒱ℛ,𝒬𝒢
}.

This theorem establishes a uniform Gaussian strong approximation under regularity con-
ditions specifically tailored to leverage the multiplicative separable structure of Rn defined in
(7). Conditions (i)–(iii) in Theorem 2 are analogous to the conditions imposed in Corollaries
1 and 2 for the general empirical process. Conditions (iv)–(v) in Theorem 2 are new, mild
restrictions on the portion of the stochastic process corresponding to the outcome yi . Con-
dition (v) either assumes ℛ is uniformly bounded, or restricts the tail decay of the function
class ℛ, without imposing restrictive assumptions on the distribution ℙY . Finally, condition
(vi) is imposed only to simplify the exposition; see [12] for the general result. We require a
pTV condition on ℛ in (v), but TV conditions on 𝒢 and 𝒢×𝒱ℛ in (vi), because ℙX admits a
Lebesgue density, but ℙY may not.

The proof strategy of Theorem 2 is similar to the proof for the general empirical process
(Theorem 1), and is given in [12], Section SA-IV. First, we discretize to a δ-net to obtain⃦⃦

Rn − ZR
n

⃦⃦
𝒢×ℛ ≤ ∥Rn − Rn ◦ π(𝒢×ℛ)δ∥𝒢×ℛ + ⃦⃦

Rn − ZR
n

⃦⃦
(𝒢×ℛ)δ

+ ⃦⃦
ZR

n ◦ π(𝒢×ℛ)δ − ZR
n

⃦⃦
𝒢×ℛ,

where the terms capturing fluctuation off-the-net, ∥Rn − Rn ◦ π(𝒢×ℛ)δ∥𝒢×ℛ and ∥ZR
n ◦

π(𝒢×ℛ)δ −ZR
n ∥𝒢×ℛ, are handled via standard empirical process methods. Second, the remain-

ing term ∥Rn − ZR
n ∥(𝒢×ℛ)δ , which captures the finite-class Gaussian approximation error, is

once again decomposed via a suitable mean square projection onto the class of piecewise
constant Haar functions on a carefully chosen collection of cells partitioning the support of
ℙZ . This is our point of departure from prior literature.

We design the partitioning cells based on two key observations: (i) regularity conditions
are often imposed on the conditional distribution of yi |xi , as opposed to on their joint dis-
tribution; and (ii) 𝒢 and ℛ often require different regularity conditions. For example, in the
classical regression case discussed previously, ℛ is just the singleton identity function but ℙY

may have unbounded support or atoms, while 𝒢 is a VC-type class of n-varying functions
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with a possibly more regular ℙX having compact support. Furthermore, the dimension of yi

is a nuisance for the strong approximation, making results like Theorem 1 suboptimal in gen-
eral. These observations suggest choosing dyadic cells by an asymmetric iterative splitting
construction, where first the support of each dimension of xi is partitioned, and only after the
support of yi is partitioned based on the conditional distribution of yi |xi . See [12] for details
on our proposed asymmetric dyadic cells expansion.

Given our dyadic expansion exploiting the structure of Rn, we decompose the term
∥Rn − ZR

n ∥(𝒢×ℛ)δ similarly to (10), leading to a projected piecewise constant process and
the corresponding two projection errors. However, instead of employing the L2-projection
Π0 as in (10), we now use another mapping Π2 from L2(ℙZ) to piecewise constant func-
tions that explicitly factorizes the product g(xi )r(yi). In fact, as we discuss in [12], each
base level cell 𝒞 produced by our asymmetric dyadic splitting scheme can be written as
a product of the form 𝒳l × 𝒴m, where 𝒳l denotes the lth cell for xi and 𝒴m denotes the
mth cell for yi . Thus, Π2 is carefully chosen so that once we know x ∈ 𝒳l for some l,

Π2[g, r](x, y) = ∑︁2N−1
m=0 1(y ∈ 𝒴m)𝔼[r(yi)|yi ∈ 𝒴m,xi ∈ 𝒳l]𝔼[g(xi )|xi ∈ 𝒳l], which only

depends on y, and has envelope and total variation no greater than those for r .
Finally, our generalized Tusnády’s lemma for more general binomial counts [12] allows

for the Gaussian coupling of any piecewise-constant functions over our asymmetrically con-
structed dyadic cells. A generalization of [30], Theorem 2.1, enables upper bounding the
Gaussian approximation error for processes indexed by piecewise constant functions by sum-
ming up a quadratic variation from all layers in the cell expansion. By the above choice
of cells and projections, the contribution from the last layers corresponding to splitting yi

amounts to a sum of one-dimensional KMT coupling error from all possible 𝒳l cells. In fact,
the one-dimensional KMT coupling is optimal and, as a consequence, requiring a vanishing
contribution of yi layers to the approximation error does not add extra requirements besides
conditions on envelope functions and an L1 bound for 𝒢. This explains why we can obtain
strong approximation rates reflecting the correct effective sample size underlying the empiri-
cal process for the kernel regression and other local empirical process examples.

The following corollary summarizes the main result from Theorem 2.

COROLLARY 4 (VC-Type Lipschitz Functions). Suppose the conditions of Theorem 2
hold with constants c and d. Then, ∥Rn − ZR

n ∥𝒢×ℛ = O(ϱn) a.s. with

ϱn = min
{︃
(cd

1M
d+1
𝒢 TVdE𝒢)

1
2d+2

n1/(2d+2)
,
(c

d
2
1 c

d
2
2 M𝒢TV

d
2E𝒢L

d
2 )

1
d+2

n1/(d+2)

}︃
(logn)α+3/2 + (logn)α+1

√
n

M𝒢.

This corollary shows that our best attainable uniform Gaussian strong approximation rate
for Rn is n−1/(d+2) polylog(n), putting aside c1, c2, M𝒢, TV, E𝒢, and L. It is not possible
to give a strict ranking between Corollary 2 and Corollary 4. On the one hand, Corollary 2
treats all components in zi symmetrically, and thus imposes stronger regularity conditions on
ℙZ , but leads to the better approximation rate n−min{1/(d+1),1/2} polylog(n), putting aside the
various constants and underlying assumptions. On the other hand, Corollary 4 can deliver a
tighter strong approximation under weaker regularity conditions whenever ℋ = 𝒢 × ℛ and
𝒢 varies with n, as in the case of the local empirical processes arising from nonparametric
regression. The next section offers an application illustrating this point.

See [12], Section SA-IV, for proofs and other omitted details. In addition, Section SA-III
in [12] present uniform Gaussian strong approximation results for a general multiplicative-
separable empirical process, which may be of interest but is not discussed in the paper to
conserve space.
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4.1. Example: Local polynomial regression. Suppose that (x1, y1), . . . , (xn, yn) are i.i.d
random vectors taking values in (ℝd+1,ℬ(ℝd+1)), with xi ∼ ℙX admitting a continuous
Lebesgue density on its support 𝒳 = [0,1]d . Consider the class of estimands

θ(w; r) = 𝔼
[︁
r(yi)|xi = w

]︁
, w ∈ 𝒲 ⊆ 𝒳 , r ∈ℛ,(13)

where we focus on two leading cases to streamline the discussion: ℛ1 = {Id} corresponds to
the conditional expectation μ(w) = 𝔼[yi |xi = w], and ℛ2 = {1(· ≤ y) : y ∈ ℝ} corresponds
to the conditional distribution function F(y|w) = 𝔼[1(yi ≤ y)|xi = w]. In the first case, ℛ
is a singleton but the identity function calls for the possibility of ℙY not being dominated by
the Lebesgue measure or perhaps being continuously distributed with unbounded support. In
the second case, ℛ is a VC-type class of indicator functions, and hence r(yi) is uniformly
bounded, but establishing uniformity over ℛ is of statistical interest (e.g., to construct speci-
fication hypothesis tests based on conditional distribution functions).

Suppose the kernel function K : ℝd → ℝ is nonnegative, Lipschitz, and has compact sup-
port 𝒦. Using standard multi-index notation, p(u) denotes the (d+𝔭)!

d!𝔭! -dimensional vector col-

lecting the ordered elements u𝝂/𝝂! for 0 ≤ |𝝂| ≤ 𝔭, where u𝝂 = u
ν1
1 · · ·uνd

d , 𝝂! = ν1! · · ·νd !
and |𝝂| = ν1 + · · · + νd , for u = (u1, . . . , ud)⊤ and 𝝂 = (ν1, . . . , νd)⊤. A local polynomial
regression estimator of θ(w; r) is

ˆ︁θ(w; r) = e⊤
1
ˆ︁𝜷(w, r), ˆ︁𝜷(w, r) = argmin

𝜷

n∑︂
i=1

(︁
r(yi) − p(xi − w)⊤𝜷

)︁2
K

(︃
xi − w

b

)︃
,

with w ∈ 𝒲 ⊆ 𝒳 , r ∈ ℛ1 or r ∈ ℛ2, and e1 denoting the first standard basis vector. See [17]
for a textbook review. The estimation error can be decomposed into three terms:ˆ︁θ(w, r) − θ(w, r) = e⊤

1 H−1
w Sw,r⏞ ⏟⏟ ⏞

linearization

+ e⊤
1
(︁ˆ︁H−1

w − H−1
w

)︁
Sw,r⏞ ⏟⏟ ⏞

nonlinearity error

+𝔼
[︁ˆ︁θ(w, r)|x1, . . . ,xn

]︁− θ(w, r)⏞ ⏟⏟ ⏞
smoothing bias

,

with ˆ︁Hw = 1
n

∑︁n
i=1 p(xi−w

b
)p(xi−w

b
)⊤ 1

bd K(xi−w
b

), Hw = 𝔼[p(xi−w
b

)p(xi−w
b

)⊤ 1
bd K(xi−w

b
)],

and Sw,r = 1
n

∑︁n
i=1 p(xi−w

b
) 1
bd K(xi−w

b
)(r(yi) −𝔼[r(yi)|xi]).

It follows that the linear term is√︁
nbde⊤

1 H−1
w Sw,r = 1√

nbd

n∑︂
i=1

𝔎w

(︃
xi − w

b

)︃(︁
r(yi) −𝔼

[︁
r(yi)|xi

]︁)︁ = Rn(g, r),

for (g, r) ∈ 𝒢 × ℛl , l = 1,2, and where 𝒢 = {b−d/2𝔎w( ·−w
b

) : w ∈ 𝒲} with 𝔎w(u) =
e⊤

1 H−1
w p(u)K(u) the equivalent boundary-adaptive kernel function. Furthermore, under the

regularity conditions given in [12], Section SA-IV.6, which relate to uniform smoothness and
moment restrictions for the conditional distribution of yi |xi ,

sup
w∈𝒲,r∈ℛ1

⃓⃓
e⊤

1
(︁ˆ︁H−1

w − H−1
w

)︁
Sw,r

⃓⃓ = O
(︁(︁

nbd)︁−1 logn + (︁
nbd)︁−3/2

(logn)5/2)︁ a.s.,

sup
w∈𝒲,r∈ℛ2

⃓⃓
e⊤

1
(︁ˆ︁H−1

w − H−1
w

)︁
Sw,r

⃓⃓ = O
(︁(︁

nbd)︁−1 logn
)︁

a.s.,

sup
w∈𝒲,r∈ℛl

⃓⃓
𝔼
[︁ˆ︁θ(w, r)|x1, . . . ,xn

]︁− θ(w, r)
⃓⃓= O

(︁
b1+𝔭)︁ a.s., l = 1,2,

provided that log(n)/(nbd) → 0. Therefore, the goal reduces to establishing a Gaussian
strong approximation for the residual-based empirical process (Rn(g, r) : (g, r) ∈ 𝒢 × ℛl),
l = 1,2. We discuss different attempts to establish such approximation result, culminating
with the application of our Theorem 2.
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As discussed in [13], Remark 3.1, a first attempt is to deploy Theorem 1.1 in [30] (or,
equivalently, Corollary 1). Viewing the empirical process as based on the random sample
zi = (xi , yi) ∼ ℙZ , i = 1,2, . . . , n, Theorem 1.1 in [30] requires ℙZ to be continuously dis-
tributed with positive Lebesgue density on its support [0,1]d+1. For this reason, [13], Re-
mark 3.1, assumes that (xi , yi) = (xi , φ(xi , ui)) where the joint law ℙB of bi = (xi , ui) ad-
mits a continuous Lebesgue density supported on ℬ = [0,1]d+1. If M{φ},ℬ < ∞, K{φ},ℬ < ∞,
supg∈𝒢 TV{φ},supp(g)×[0,1] < ∞, and other regularity conditions hold, then it can be shown
[12], Section SA-IV.6, that applying [30] to (Xn(h) : h ∈ ℋl) based on (bi : 1 ≤ i ≤ n) with
ℋl = {g · (r ◦φ)− g · θ(·, r) : g ∈ 𝒢, r ∈ ℛl}, l = 1,2, gives a Gaussian strong approximation
with rate (6). Without the local total variation condition K{φ},ℬ < ∞, an additional

√
logn

multiplicative factor appears in the final rate.
The previous result does not exploit Lipschitz continuity, so a natural second attempt is to

employ Corollary 2 to improve it. Retaining the same assumptions, but now also assuming
that φ is Lipschitz, our Theorem 1 gives a Gaussian strong approximation for (Xn(h) : h ∈
ℋ1) with rate (8). Theorem 1 does not give an improvement for ℛ2 because the Lipschitz
condition is not satisfied. See [12], Section SA-IV.6.

The two attempts so far impose restrictive assumptions on the joint distribution of the
data, and deliver approximation rates based on the incorrect effective sample size (and thus
require nbd+1 → ∞). Our Theorem 2 addresses both problems: since Supp(ℋ) = 𝒲 + b𝒦,
and under standard regularity conditions, we can set ℚℋ and ϕℋ according to the discussion
in Example 1, and thus we verify in [12], Section SA-IV.6, that c1 = O(1), c2 = O(1),
M𝒢 = O(b−d/2), E𝒢 = O(bd/2), K𝒢 = O(b−d/2), TV = O(bd/2−1), and L = O(b−d/2−1).
This gives ∥Rn − ZR

n ∥𝒢×ℛ2 = O(ϱn) a.s. with

ϱn = (︁
nbd)︁−1/(d+2)

√︂
logn + (︁

nbd)︁−1/2 logn.

If, in addition, we assume supw∈𝒲 𝔼[exp(|yi |)|xi = w] < ∞, then ∥Rn −ZR
n ∥𝒢×ℛ1 = O(ϱn)

a.s. with

ϱn = (︁
nbd)︁−1/(d+2)

√︂
logn + (︁

nbd)︁−1/2
(logn)2.

As a consequence, our results verify that the following strong approximations hold:

• Let ˆ︁μ(w) = ˆ︁θ(w; r) for r ∈ ℛ1. Recall that ℛ1 consists of the singleton of identity function

Id. If b𝔭+1(nbd)
d+4
2d+4 (logn)−1/2 + (nbd)−

d+1
d+2 (logn)2 = O(1), then

sup
w∈𝒲

⃓⃓√︁
nbd

(︁ˆ︁μ(w) − μ(w)
)︁− ZR

n (w)
⃓⃓ = O(rn) a.s., rn =

(︃
(logn)1+d/2

nbd

)︃ 1
d+2

,

where ℂov(ZR
n (w1),Z

R
n (w2)) = nbdℂov(e⊤

1 H−1
w1

Sw1,Id, e⊤
1 H−1

w2
Sw2,Id) for all w1,w2 ∈

𝒲 .
• Let ˆ︁F(y|w) = ˆ︁θ(w; ry) for ry = 1(· ≤ y) ∈ ℛ2. If b𝔭+1(nbd)(d+4)/(2d+4)(logn)−1/2 =

O(1) and (nbd)−1 logn = o(1), then

sup
w∈𝒲,y∈ℝ

⃓⃓√︁
nbd

(︁ˆ︁F(y|w) − F(y|w)
)︁− ZR

n (w, y)
⃓⃓= O(rn) a.s.,

where ℂov(ZR
n (w1, u1),Z

R
n (w2, u2)) = nbdℂov(e⊤

1 H−1
w1

Sw1,ru1
, e⊤

1 H−1
w2

Sw2,ru2
) for all

(w1, u1), (w2, u2) in 𝒲 ×ℝ and ru1, ru2 ∈ ℛ2.

This example gives a statistical application where Theorem 2 offers a strict improvement
on the accuracy of the Gaussian strong approximation over [30], and the improved Theorem
1 upon incorporating a Lipschitz condition on the function class. See [12], Section SA-IV.6,
for omitted details. It remains an open question whether the result in this section provides
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the best Gaussian strong approximation for local polynomial regression or, more generally,
for a local empirical process. The results presented are the best in the literature, but we are
unaware of lower bounds that would confirm the approximation rates are unimprovable.

5. Quasi-uniform Haar functions. Assuming the existence of a surrogate measure and
a normalizing transformation, or otherwise restricting the data generating process, Theorem
1 established that the general empirical process (1) indexed by VC-type Lipschitz functions
can admit a strong approximation (3) at the optimal univariate KMT rate ϱn = n−1/2 logn

when d ∈ {1,2}, and at the improved (but possibly suboptimal) rate ϱn = n−1/d
√

logn when
d ≥ 3, putting aside c1, c2, c3, Mℋ, Lℋ, TVℋ, and Kℋ. The possibly suboptimal strong ap-
proximation rate arises from the L2-approximation of the functions h ∈ ℋ by a Haar basis
expansion based on a carefully chosen dyadic partition of a cover of 𝒳 . Likewise, Theorem 2
established an improved uniform Gaussian strong approximation for the residual-based em-
pirical process (7), but the result is also limited by the mean square projection error incurred
by employing a Haar basis expansion based on a carefully chosen, asymmetric partitioning
of the support of zi = (xi , yi).

Motivated by the limitations introduced by the mean square projection error underlying the
proofs of Theorems 1 and 2, this section presents uniform Gaussian strong approximations
for (Xn(h) : h ∈ ℋ) and (Rn(g, r) : (g, r) ∈ 𝒢 × ℛ) when ℋ and 𝒢 belong to the span of
a Haar basis based on a quasi-uniform partition with cardinality L, which can be viewed
as an approximation based on L → ∞ as n → ∞. We do not require the existence of a
normalizing transformation, allow for more general partitioning schemes than dyadic cells
expansions, and impose minimal restrictions on the data generating process, while achieving
the univariate KMT optimal strong approximation rate based on the effective sample size n/L

for all d ≥ 1. The strong approximation results presented in this section generalize two ideas
from the regression Splines literature [21]: (i) the cells forming the Haar basis are assumed to
be quasi-uniform with respect to a surrogate measure 𝒬ℋ; and (ii) the number of active cells
of the Haar basis affects the strong approximation. We apply the strong approximation results
to histogram density estimation, and partitioning-based regression estimation based on Haar
basis, which includes certain regression trees [4] and other related methods [8]. Proof and
omitted technical details are given in [12], Section SA-V.

5.1. General empirical process. The following result is the analogue of Theorem 1.

THEOREM 3. Suppose (xi : 1 ≤ i ≤ n) are i.i.d. random vectors taking values in
(ℝd,ℬ(ℝd)) with common law ℙX supported on 𝒳 ⊆ ℝd , and the following condition holds.

(i) ℋ ⊆ Span{1Δl
: 0 ≤ l < L} is a class of Haar functions on (ℝd,ℬ(ℝd),ℙX).

(ii) There exists a surrogate measure ℚℋ for ℙX with respect to ℋ such that {Δl : 0 ≤
l < L} forms a quasi-uniform partition of 𝒬ℋ with respect to ℚℋ:

𝒬ℋ ⊆ ⨆︂
0≤l<L

Δl and
max0≤l<Lℚℋ(Δl)

min0≤l<Lℚℋ(Δl)
≤ ρ < ∞.

(iii) Mℋ < ∞.

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaus-
sian processes (ZX

n (h) : h ∈ ℋ) with almost sure continuous trajectories on (ℋ,𝔡ℙX
) such

that:

• 𝔼[Xn(h1)Xn(h2)] = 𝔼[ZX
n (h1)Z

X
n (h2)] for all h1, h2 ∈ℋ, and

• ℙ[∥Xn − ZX
n ∥ℋ > C1CρPn(t)] ≤ C2e

−t + Le−Cρn/L for all t > 0,
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where C1 and C2 are universal constants, Cρ is a constant that only depends on ρ, and

Pn(t) = min
δ∈(0,1)

{︁
Hn(t, δ) + Fn(t, δ)

}︁
,

with

Hn(t, δ) =
√︄
MℋEℋ
n/L

√︂
t + logNℋ(δ,Mℋ) +

√︄
min{log2 L,S2

ℋ}
n

Mℋ
(︁
t + logNℋ(δ,Mℋ)

)︁
,

where Sℋ = suph∈ℋ
∑︁L

l=1 1(Supp(h) ∩ Δl ≠ ∅).

This theorem shows that if n−1L log(nL) → 0, then a valid strong approximation can be
achieved with exponential probability concentration. The proof of Theorem 3 leverages the
fact that the L2-projection error is zero by construction, but recognizes that [30], Theorem
2.1, does not apply because the partitions are quasi-dyadic, preventing the use of the cele-
brated Tusnády’s inequality. Instead, in [12], we present two technical results to circumvent
that limitation: (i) we combine [6], Lemma 2, and [31], Lemma 2, to establish a version of
Tusnády’s inequality that allows for more general binomial random variables Bin(n,p) with
p ≤ p ≤ p, the error bound holding uniformly in p, as required by the quasi-dyadic parti-
tioning structure; and (ii) we generalize [30], Theorem 2.1, to the case of quasi-dyadic cells.

Assuming a VC-type condition on ℋ, and putting aside Mℋ, Eℋ, and Sℋ, it follows that
(3) holds with ϱn = √

log(n)/
√

n/L + log(n)/
√

n. More generally, we have the following.

COROLLARY 5 (VC-type Haar Functions). Suppose the conditions of Theorem 3 hold. In
addition, assume that ℋ is a VC-type class with function Mℋ over 𝒬ℋ with constants cℋ ≥ e

and dℋ ≥ 1. Then, if n−1L log(nL) → 0, (3) holds with

ϱn =
√︄
MℋEℋ
n/L

√︂
logn +

√︄
min{log2 L,S2

ℋ}
n

Mℋ logn.

We offer a simple statistical application of Theorem 3 in the next example.

EXAMPLE 2 (Histogram Density Estimation). The histogram density estimator of fX is

f̌X(w) = 1

n

n∑︂
i=1

P−1∑︂
l=0

1(w ∈ Δl)1(xi ∈ Δl),

where {Δl : 0 ≤ l < P } are disjoint and satisfy max0≤l<P ℙX(Δl) ≤ ρ min0≤l<P ℙX(Δl).
For L proportional to ℙX(Δl)

−1, up to ρ, we establish a strong approximation for the
localized empirical process (ζn(w) : w ∈ 𝒲), 𝒲 ⊆𝒳 , where

ζn(w) = √
nL

(︁
f̌X(w) −𝔼

[︁
f̌X(w)

]︁)︁ = Xn(hw), hw ∈ℋ,

with ℋ = {hw(·) = L1/2 ∑︁P−1
l=0 1(w ∈ Δl)1(· ∈ Δl) : w ∈𝒲} a collection of Haar basis func-

tions based on the partition {Δl : 0 ≤ l < P }. It follows that Mℋ,ℝd = L1/2 and Sℋ = 1.
If 𝒲 = 𝒳 , then we set L = P , ℚℋ = ℙX , 𝒬ℋ = 𝒳 , and the conditions of Theorem 3 are

satisfied with Eℋ = L−1/2. Then, for Xn = ζn, (3) holds with ϱn = log(nL)/
√

n/L, assuming
that n−1L log(nL) → 0.

If 𝒲 ⊊ 𝒳 , assume 𝒲 ⊆ ⨆︁
0≤l<P Δl . If ℙX(

⨆︁
0≤l<P Δl) < 1, then {Δl : 0 ≤ l < P } is no

longer a quasi-uniform partition of 𝒳 with respect to ℙX . The surrogate measure can help in



STRONG APPROXIMATIONS FOR EMPIRICAL PROCESSES 1225

this setting: we may add or refine cells to handle the residual probability ℙX[(⨆︁0≤l<P Δl)
c].

For example, suppose that for some
◦

P ∈ ℕ we have

◦
P ≤ ℙX((

⨆︁
0≤l<P Δl)

c)

min0≤l<P ℙX(Δl)
<

◦
P + 1.

Set L = P + ◦
P . For any collection of disjoint cells {Δl : P ≤ l < L} in 𝒳 ∪ Supp(ℋ)c,

take ℚℋ to agree with ℙX on
⨆︁

0≤l<P Δl and ℚℋ(Δl) = ◦
P −1ℙX[(⨆︁0≤l<P Δl)

c] for l =
P, . . . ,L − 1. Then, the enlarged class of cells {Δl : 0 ≤ l < L + K} and the probability
measure ℚℋ satisfy conditions (i) and (ii) in Theorem 3. It follows that Eℋ = L−1/2 and
hence, for Xn = ζn, (3) holds with ϱn = log(nL)/

√
n/L, assuming that n−1L log(nL) → 0.

In particular, the quasi-uniformity condition of ℙX is required on a cover of 𝒲 , instead of
on a cover of 𝒳 , at the expense of possibly increasing the number of cells to account for the
residual probability ℙX[(⨆︁0≤l<P Δl)

c].

Theorem 3, and in particular Example 2, showcases the existence of a class of stochastic
processes for which a uniform Gaussian strong approximation can be established with opti-
mal univariate KMT rate in terms of the effective sample size n/L for all d ≥ 1. This result is
achieved because there is no projection error (ℋ is spanned by a Haar basis), and the coupling
error is controlled via our generalized Tusnády’s inequality. See [12] for details.

5.2. Residual-based empirical process. The next result is the analogue of Theorem 2.

THEOREM 4. Suppose (zi = (xi , yi) : 1 ≤ i ≤ n) are i.i.d. random vectors taking values
in (ℝd+1,ℬ(ℝd+1)) with common law ℙZ , where xi has distribution ℙX supported on 𝒳 ⊆
ℝd , yi has distribution ℙY supported on 𝒴 ⊆ ℝ, and the following conditions hold.

(i) 𝒢 ⊆ Span{1Δl
: 0 ≤ l < L} is a class of Haar functions on (ℝd,ℬ(ℝd),ℙX).

(ii) There exists a surrogate measure ℚ𝒢 for ℙX with respect to 𝒢 such that {Δl : 0 ≤ l <

L} forms a quasi-uniform partition of 𝒬𝒢 with respect to ℚ𝒢:

𝒬𝒢 ⊆ ⨆︂
0≤l<L

Δl and
max0≤l<Lℚ𝒢(Δl)

min0≤l<Lℚ𝒢(Δl)
≤ ρ < ∞.

(iii) 𝒢 is a VC-type class with envelope function M𝒢 over 𝒬𝒢 with c𝒢 ≥ e and d𝒢 ≥ 1.
(iv) ℛ is a real-valued pointwise measurable class of functions on (ℝ,ℬ(ℝ),ℙY ).
(v) ℛ is a VC-type class with envelope Mℛ,𝒴 over 𝒴 with cℛ,𝒴 ≥ e and dℛ,𝒴 ≥ 1, where

Mℛ,𝒴(y) + pTVℛ,(−|y|,|y|) ≤ v(1 + |y|α) for all y ∈ 𝒴 , for some v> 0, and for some α ≥ 0.
Furthermore, if α > 0, then supx∈𝒳 𝔼[exp(|yi |)|xi = x] ≤ 2.

(vi) There exists a constant k such that | log2 E𝒢| + | log2 M𝒢| + | log2 L| ≤ k log2 n.

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaus-
sian processes (ZR

n (g, r) : (g, r) ∈ 𝒢 × ℛ) with almost sure continuous trajectories on
(𝒢×ℛ,𝔡ℙZ

) such that:

• 𝔼[Rn(g1, r1)Rn(g2, r2)] = 𝔼[ZR
n (g1, r1)Z

R
n (g2, r2)] for all (g1, r1), (g2, r2) ∈ 𝒢×ℛ, and

• ℙ[∥Rn − ZR
n ∥𝒢×ℛ > C1Cv,α(CρUn(t) + Vn(t))] ≤ C2e

−t + Le−Cρn/L for all t > 0,

where C1 and C2 are universal constants, Cv,α = vmax{1 + (2α)
α
2 ,1 + (4α)α}, Cρ is a

constant that only depends on ρ,

Un(t) =
(︃√︄

dM𝒢E𝒢
n/L

+ M𝒢√
n
(logn)α

)︃(︁
t + k log2 n + d log(cn)

)︁α+1
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with c= c𝒢cℛ,𝒴 , d= d𝒢 + dℛ,𝒴 , and

Vn(t) = 1
(︁|ℛ| > 1

)︁√︁
M𝒢E𝒢

(︂
max

0≤l<L
∥Δl∥∞

)︂
L𝒱ℛ

√︂
t + k log2 n + d log(cn),

with 𝒱ℛ = {θ(·, r) : r ∈ℛ}, and θ(x, r) = 𝔼[r(yi)|xi = x].

The first term, Un(t), can be interpreted as a “variance” contribution based on the effec-
tive sample size n/L, up to polylog(n) terms, while the second term, Vn(t), can be inter-
preted as a “bias” term that arises from the projection error for the conditional mean func-
tion 𝔼[r(yi)|xi = x], which may not necessarily lie in the span of Haar basis. In the special
case when ℛ is a singleton, we can construct the cells based on the condition distribution
of r(yi) − 𝔼[r(yi)|xi], thereby making the conditional mean function (and hence the “bias”
term) zero, but such a construction is not possible when uniformity over ℛ is desired.

Theorem 4 gives the following uniform Gaussian strong approximation result.

COROLLARY 6 (VC-type Haar Basis). Suppose the conditions of Theorem 4 hold with
constants c and d. Then, if n−1L log(nL) → 0, ∥Rn − ZR

n ∥𝒢×ℛ = O(ϱn) a.s. with

ϱn =
√︄
M𝒢E𝒢
n/L

(logn)α+1 + M𝒢√
n
(logn)2α+1 + 1

(︁|ℛ| > 1
)︁√︁
M𝒢E𝒢

(︂
max

0≤l<L
∥Δl∥∞

)︂√︂
logn.

Setting aside M𝒢 and E𝒢, an approximation rate is (logn)2α+1(n/L)−1/2 + 1(|ℛ| >

1)(max0≤l<L∥Δl∥∞)
√

logn, which can achieve the optimal univariate KMT strong approx-
imation rate based on the effective sample size n/L, up to a polylog(n) term, when ℛ is a
singleton function class. See [12], Section SA-V, for details.

The next section illustrates Theorem 4 with an example studying nonparametric regression
estimation based on a Haar basis approximation.

5.3. Example: Haar partitioning-based regression. Suppose (zi = (xi , yi),1 ≤ i ≤ n)

are i.i.d. random vectors taking values in (𝒳 ×ℝ,ℬ(𝒳 ×ℝ)) with 𝒳 ⊆ℝd . As in Section 4.1,
consider the regression estimand (13), focusing again on the two examples ℛ1 and ℛ2. Instead
of local polynomial regression, we study the Haar partitioning-based estimator:

θ̌ (w, r) = p(w)⊤ˆ︁𝜸 (r), ˆ︁𝜸 (r) = argmin
𝜸∈ℝL

n∑︂
i=1

(︁
r(yi) − p(xi )

⊤𝜸
)︁2

,

where p(u) = (1(u ∈ Δl) : 0 ≤ l < L), and w ∈ 𝒲 ⊆ 𝒳 . As in Example 2, either 𝒲 = 𝒳
or 𝒲 ⊊ 𝒳 , but for simplicity we discuss only the former case, and hence we assume that
{Δl : 0 ≤ l < L} is a quasi-uniform partition of 𝒬ℋ = 𝒳 with respect to ℚℋ = ℙX .

The estimation error can again be decomposed into three terms:

θ̌ (w, r) − θ(w, r)

= p(w)⊤Q−1Tr⏞ ⏟⏟ ⏞
linearization

+p(w)⊤
(︁ˆ︁Q−1 − Q−1)︁Tr⏞ ⏟⏟ ⏞

nonlinearity error

+𝔼
[︁
θ̌ (w, r)|x1, . . . ,xn

]︁− θ(w, r)⏞ ⏟⏟ ⏞
smoothing bias

,

where Q = 𝔼[p(xi)p(xi )
⊤], ˆ︁Q = 1

n

∑︁n
i=1 p(xi )p(xi )

⊤, and Tr = 1
n

∑︁n
i=1 p(xi)(r(yi) −

𝔼[r(yi)|xi]). In this example, the linearization term takes the form

√︁
n/Lp(w)⊤Q−1Tr = 1√

n

n∑︂
i=1

kw(xi )
(︁
r(yi) −𝔼

[︁
r(yi)|xi

]︁)︁ = Rn(g, r), g ∈ 𝒢, r ∈ ℛl ,
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for l = 1,2, where 𝒢 = {kw(·) : w ∈ 𝒲} with kw(u) = L−1/2 ∑︁
0≤l<L 1(w ∈ Δl)1(u ∈

Δl)/ℙX(Δl) the equivalent kernel. Under standard regularity conditions including smooth-
ness and moment assumptions ([12], Section SA-V.3),

sup
r∈ℛ1

⃓⃓
e⊤

1
(︁ˆ︁Q−1 − Q−1)︁Tr

⃓⃓ = O
(︁
log(nL)L/n + (︁

log(nL)L/n
)︁3/2 logn

)︁
a.s.,

sup
r∈ℛ2

⃓⃓
e⊤

1
(︁ˆ︁Q−1 − Q−1)︁Tr

⃓⃓ = O
(︁
log(nL)L/n

)︁
a.s.,

sup
w∈𝒲,r∈ℛl

⃓⃓
𝔼
[︁
θ̌ (w, r)|x1, . . . ,xn

]︁− θ(w, r)
⃓⃓= O

(︂
max

0≤l<L
∥Δl∥∞

)︂
a.s., l = 1,2,

provided that log(nL)L/n → 0. Finally, for the residual-based empirical process (Rn(g, r) :
g ∈ 𝒢, r ∈ ℛl), l = 1,2, we apply Theorem 4. First, M𝒢 = L1/2 and E𝒢 = L−1/2, and we can
take c𝒢 = L and d𝒢 = 1 because 𝒢 has finite cardinality L. For the singleton case ℛ1, we
can take cℛ1 = 1 and dℛ1 = 1, α = 1 if supx∈𝒳 𝔼[exp(|yi |)|xi = x] ≤ 2, and condition (v) in
Theorem 4 holds, which implies that ∥Rn − ZR

n ∥𝒢×ℛ1 = O(ϱn) a.s. with

ϱn = log(nL)2
√

n/L
,

provided that log(nL)L/n → 0. For the VC-Type class ℛ2, we can verify condition (v) in
Theorem 4 with α = 0, and we can take cℛ2 to be some universal constant and dℛ2 = 2 by
[34], Theorem 2.6.7, which implies that ∥Rn − ZR

n ∥𝒢×ℛ1 = O(ϱn) a.s. with

ϱn = log(nL)√
n/L

+ max
0≤l<L

∥Δl∥∞,

provided that log(n)L/n → 0. A uniform Gaussian strong approximation for the Haar
partitioning-based regression processes (

√
n/L(θ̌(w, r) − θ(w, r)) : (w, r) ∈ 𝒲 × ℛl), l =

1,2, follows directly from the results obtained above, as illustrated in Section 4.1.
This example showcases a statistical application of our strong approximation result (The-

orem 4) where the optimal univariate KMT strong approximation rate based on the effective
sample size n/L is achievable, up to polylog(n) terms and the complexity of ℛ. See [12],
Section SA-V.3, for omitted details.

Acknowledgments. We specially thank Boris Hanin for many insightful discussions.
We also thank Rajita Chandak, Jianqing Fan, Kengo Kato, Jason Klusowski, Xinwei Ma,
Boris Shigida, Jennifer Sun, Rocio Titiunik, Will Underwood, and two reviewers for their
comments and suggestions.

Funding. The first author was supported by the National Science Foundation through
grants DMS-2210561 and SES-2241575.

SUPPLEMENTARY MATERIAL

Proofs and other technical results (DOI: 10.1214/25-AOS2500SUPP; .pdf). The supple-
mentary material [12] collects detailed proofs of our main results, and also provides other
technical results that may be of independent interest.
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